Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 10^n + 18n - 1
= (10^n - 1) + 18n
= 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1)
= 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3.
Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3
=> 11...1 (n chữ số 1) - n chia hết cho 3
=> A chia hết cho 3
=> 9.A chia hết cho 27
Vay 10^n + 18n - 1 chia hết cho 27 (đpcm)
Ta có: 10n - 36n - 1 = 999...9 (có n c/s 9) + 1 - 36n - 1
= 999...9 - 36n
= 9.111....1 - 9.4n
= 9.(111....1 - 4n)
Xét: 111....1 - 4n = 111...1 - n - 3n
=> 111....1 - n chia hết cho 3
=> 111...1 - n - 3n chia hết cho 3
=> 111....1 - 4n chia hết cho 3
=> 9.(111....1 - 4n) chia hết cho 27
Vậy 10n - 36n - 1 chia hết cho 27
Chứng minh bằng phương pháp quy nạp: Tức là :
- Điều cần chứng minh đúng với n = 1
- nếu điều cần chứng minh đúng với n = k thì cũng đúng với n = k + 1
=> Điều cần chứng minh là đúng
Giải bài:
- Với n = 1 : ta có 36 - 26 - 27 = 676 chia hết cho 169
- Giả sử : với n = k ta có: 33k+3 - 26k - 27 chia hết cho 169
Xét 33(k+1)+3 - 26.(k+1) - 27 = 27.33k+3 - 26k - 53 = 27.(33k+3 - 26k - 27) + 676k +676 chia hết cho 13 vì 33k+3 - 26k - 27 ; 676 đều chia hết cho 169
=> 33(k+1)+3 - 26.(k+1) - 27 chia hết cho 169
Vậy 33n+3 - 26n - 27 chia hết cho 169 với mọi n > =1