Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9x+5y chia hết cho 17
=>2(9x+5y) chia hết cho 17
=>18x+10y chia hết cho 17
=>18x+10y+17y chia hết cho 17
=>18x+27y chia hết cho 17
=>9(2x+3y) chia hết cho 17
vì (9;17)=1=>2x+3y chia hết cho 17
=>đpcm
Ta có:4(2x+3y)+(9x+5y)
=8x+12y+9x+5y
=17x+17y chia hết cho 17
Mà 4(2x+3y) chia hết cho 17 nên 9x+5y chia hết cho 17
9x+5y = 17x - 8x + 17y - 12y = 17(x+y) - 4(2x+3y)
chia hết cho 17 khi và chỉ khi 2x+3y chia hết cho 17
=>Nếu 2x+3y chia hết cho 17 thì 9x+5y cũng chia hết cho 17
Lời giải:
Nếu $2x+3y\vdots 17$
$\Rightarrow 9(2x+3y)\vdots 17$
$\Rightarrow 18x+27y\vdots 17$
$\Rightarrow 18x+27y-17y\vdots 17$
$\Rightarrow 18x+10y\vdots 17$
$\Rightarrow 2(9x+5y)\vdots 17$
$\Rightarrow 9x+5y\vdots 17(1)$
-----------------------
Nếu $9x+5y\vdots 17$
$\Rightarrow 2(9x+5y)\vdots 17$
$\Rightarrow 18x+10y\vdots 17$
$\Rightarrow 18x+10y+17y\vdots 17$
$\Rightarrow 18x+27y\vdots 17$
$\Rightarrow 9(2x+3y)\vdots 17$
$\Rightarrow 2x+3y\vdots 17(2)$
Từ $(1); (2)$ ta có đpcm.
9x + 5y chia hết cho 17
2(9x + 5y) chia hết cho 17
18x + 10y chia hết cho 17
10x + 10y + 17y chia hết cho 17
18x + 27y chia hết cho 17
9(2x + 3y) chia hết cho 17
Vậy 2x + 3y chia hết cho 17 khi và chỉ khi 9x + 5y chia hết cho 17
Lời giải:
Chiều xuôi:
$2x+3y\vdots 17$
$\Rightarrow 4(2x+3y)\vdots 17$
$\Rightarrow 8x+12y\vdots 17$
$\Rightarrow 17x+17y-(8x+12y)\vdots 17$
$\Rightarrow 9x+5y\vdots 17(1)$
------------------------
Chiều ngược:
$9x+5y\vdots 17$
$\Rightarrow 17x+17y-(9x+5y)\vdots 17$
$\Rightarrow 8x+12y\vdots 17$
$\Rightarrow 4(2x+3y)\vdots 17$
$\Rightarrow 2x+3y\vdots 17(2)$
Từ $(1);(2)$ ta có đpcm.
Ta có 17x+17y chia hết cho 17
9x+5y chia hết cho 17
=> 17x+17y-9x-5y=8x+12y=4(2x+3y) chia hết cho 17 => 2x+3y chia hết cho 17
Giả sử: \(9x+5y⋮17\)
\(\Rightarrow3\left(9x+5y\right)⋮17\)
\(\Rightarrow27x+15y⋮17\)
\(\Rightarrow\left(17x+10x+15y\right)⋮17\)
\(Vì\) \(17x⋮17\) nên \(\left(10x+15y\right)⋮17\)
\(\Rightarrow2x+3y⋮17\) \(chỉ\)\(khi\) \(\left(9x+5y\right)⋮17\left(dieu1\right)\)
Giả sử: \(2x+3y⋮17\)
\(\Rightarrow5\left(2x+3y\right)⋮17\)
\(\Rightarrow\left(10x+15y\right)⋮17\)
\(\Rightarrow\left(17x+10x+15y\right)⋮17\)
\(\Rightarrow\left(27x+15y\right)⋮17\)
\(\Rightarrow3\left(9x+5y\right)⋮17\)
\(Mà\) \(3\) không chia hết cho 17 \(\Rightarrow9x+5y⋮17\) (điều 2)
Từ điều 1 và điều 2 \(\Rightarrow2x+3y⋮17\Leftrightarrow9x+5y⋮17\)
Vậy \(2x+3y⋮17\Leftrightarrow9x+5y⋮17\)
tìm a ,b biết
a, ƯCLN(a,b) =6 và BCNN(a,b) =36
b, a.b =4500 và BCNN(a,b) =300
c, a+b =30 và ƯCLN (a,b) =6
Toán lớp 6 Ước chungBội chung
Nguyễn Thị Thanh Ngọc 07/12/2015 lúc 16:59
Báo cáo sai phạm
a)Tích của a và b là:36.6=216
a=6.m
b=6.n
m,n thuộc N và UCLN(m,n)=1
Ta có:a .b =216
hay 6.m.6.n=216
36(m.n)=216
m.n=216:36
m.n=6
m 1 2
n 6 3
=>a 6 12
b 36 18
Vậy ta có(a;b) hoặc(b;a) ={(6;36);(12;18)}
b)UCLN(a,b)=4500:300=15
a=15.m
b=15.n
m,n thuộc N và UCLN(m,n)=1
Ta có:a .b=4500
hay 15.m.15.n=4500
225(m.n)=4500
m.n=4500:225
m.n=20
m 1 4
n 20 5
=>a 15 60
b 300 75
Vậy ta có các cặp số(a,b) (15;300)