Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n^4+2n^3+2n^2+2n+1\)
\(=\left(n^4+2n^3+n^2\right)+\left(n^2+2n+1\right)\)
\(=n^2\left(n^2+2n+1\right)+\left(n^2+2n+1\right)\)
\(=n^2.\left(n+1\right)^2+\left(n+1\right)^2\)
\(=\left(n^2+1\right)\left(n+1\right)^2\)
Vì \(n^2< n^2+1< \left(n+1\right)^2\) nên \(n^2+1\) không thể là số chính phương
\(A=\left(n^2+1\right)\left(n+1\right)^2\)không thể là số chính phương (đpcm)
A = n 4 – 2 n 3 – n 2 +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó A ⋮ 24 .
Ta có : A = n2(n2 +2n + 1) + ( n2 + 2n + 1) = (n2+1).(n+1)2
Vì n2 + 1 không phải là số chính phương nên A không phải là số chính phương.
Đặt 111...1 ( n chữ số) = x, ta có:
b = 222...2 ( n chữ số) = 2x.
a = 111...1 ( 2n chữ số) = \(\left(10^n+1\right)x\)
Ta có:
\(\left(10^n+1\right)x-2x=10^n.x+x-2x=10^nx-x\)
\(=\left(9x+1\right).x-x=9x^2+x-x=9x^2=\left(3x\right)^2\)
Vật a-b là một số chính phương