K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2017

Đề kiểu gì v ta? Tính 3443 - 100 ra 3343 không chia hết cho 132 

20 tháng 1 2017

S = 3443 - 100 

S = 3343 : 132=25 ( dư 43)

vậy không chứng minh được S chia hết cho 132.

4 tháng 2 2017

342 đồng dư vs 100 (mod 132)

=> 3442 đồng dư vs 100 (mod 132)

=> 3443 đồng dư vs 100*34 đồng dư vs 100 (mod 132)

=> 3443-100 đồng dư vs 100-100 đồng dư vs 0 (mod 132)

20 tháng 1 2017

vì mình không biết

8 tháng 11 2019

a) Sai đề. 

b) \(9^{34}-27^{22}+81^{16}\)

\(=3^{68}-3^{66}+3^{64}\)

\(=3^{64}\left(3^4-3^2+1\right)=3^{64}.73=3^{62}.9.73\)

\(3^{62}.657⋮657\)

13 tháng 2 2016

A = (-7) + (-7)+ ...+ (-7)2006 + (-7)2007

A = [ (-7) + (-7)2 + (-7)3 ] + [ (-7)4 + (-7)5 + (-7)6 ] + ... + [ (-7)2005 + (-7)2006 + (-7)2007 ]

A = (-7) . [ 1 + (-7) + (-7)2 ] + (-7)4 . [ 1+ (-7) + (-7)2 ] + ... + (-7)2005 . [ 1 + (-7) + (-7)2 ]

A = (-7) . 43 + (-7)4 . 43 + ... + (-7)2005 . 43

A = 43 . [ (-7) + (-7)4 + ... + (-7)2005 ]

=>A chia hết cho 43

Vậy A chia hết cho 43

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Lời giải:
a)

Ta có:

\(1991\equiv 1\pmod {10}\Rightarrow 1991^{1997}\equiv 1^{1997}\equiv 1\pmod {10}(1)\)

\(1997\equiv 7\pmod {10}\Rightarrow 1997^{1996}\equiv 7^{1996}\pmod {10}(2)\)

\(7^2\equiv -1\pmod {10}\Rightarrow 7^{1996}\equiv (-1)^{998}\equiv 1\pmod {10}(3)\)

Từ \((1);(2);(3)\Rightarrow 1991^{1997}-1997^{1996}\equiv 1-1\equiv 0\pmod {10}\) (đpcm)

b)

\(2^9+2^{99}=2^9(1+2^{90})\)

Ta thấy $2^{10}=1024\equiv -1\pmod {25}$
$\Rightarrow 2^{90}\equiv (-1)^9\equiv -1\pmod {25}$

$\Rightarrow 1+2^{90}\equiv 0\pmod {25}$ hay $1+2^{90}\vdots 25$

Mà $2^9\vdots 4$

Do đó:

$2^9+2^{99}=2^9(1+2^{90})\vdots 100$ (đpcm)