Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề kiểu gì v ta? Tính 3443 - 100 ra 3343 không chia hết cho 132
S = 3443 - 100
S = 3343 : 132=25 ( dư 43)
vậy không chứng minh được S chia hết cho 132.
B1 a, a^3 - a = a.(a^2-1) = (a-1).a.(a+1) chia hết cho 3
b, a^7-a = a.(a^6-1) = a.(a^3-1).(a^3+1)
Ta thấy số lập phương khi chia 7 dư 0 hoặc 1 hoặc 6
+Nếu a^3 chia hết cho 7 => a^7-a chia hết cho 7
+Nếu a^3 chia 7 dư 1 thì a^3-1 chia hết cho 7 => a^7-a chia hết cho 7
+Nếu a^3 chia 7 dư 6 => a^3+1 chia hết cho 7 => a^7-a chia hết cho 7
Vậy a^7-a chia hết cho 7
b, a^7-a=a(a^6-1)
=a(a^3+1)(a^3-1)
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1)
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1)
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1)
+7a (a-1) (a+1) (a^2+a-1)
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
+7a (a-1) (a+1) (a^2+a-1)
+7a (a-1) (a+1) (a^2-a-6)
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7)
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)]
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7.
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7
Do 7 chia 6 dư 1; mũ lên bao nhiêu vẫn chia 6 dư 1
=> 7100 chia 6 dư 1
Mà 1 chia 6 dư 1
=> 7100 - 1 chia hết cho 6 ( đpcm)
Do 7 chia 6 dư 1 ; mũ lên bao nhiêu vẫn chia 6 dư 1
=> 7100 chia 6 dư 1
Mà 1 chia 6 dư 1
=> 7100 - 1 chia hết cho 6
K mình nha bạn !!!
vì mình không biết