Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$3^{x+1}+3^{x+2}+..........+3^{x+100}\\=3^x(3+3^2+.........+3^{100}$
Vì $3 \to 3^{100}$ có 100 số nên ta ghép 4 số vào 1 cặp
$\to 3^{x+1}+3^{x+2}+..........+3^{x+100}\\=3^x[(3+3^2+3^3+3^4)+......+3^{97}+3^{98}+3^{99}+3^{100}\\=3^x[120+...+3^{96}.120] \vdots 120(đpcm)$
=> ( 3x+1 + 3x+2 + 3x+3 + 3x+4 + 3x+5 ) + .... + ( 3x+96 + 3x+97 + 3x+98 + 3x+99 + 3x+100 )
=> 3x.( 3 + 32 + 33 + 34 ) + ... + 3x+95.( 3 + 32 + 33 + 34 )
=> 3x.120 + 3x+5.120 + .... + 3x+95 . 120
=> 120 . ( 3x + 3x+5 + ... + 3x+95 ) chia hết cho 120 ( đpcm )
Chứng minh rằng: \(3^{x+1}+3^{x+2}+3^{x+3}+....+3^{x+100}\)chia hết cho 120 ( với x là số tự nhiên )
Gọi tổng \(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\)là A, ta có :
\(A=3^x\times3+3^x\times3^2+3^x\times3^3+...+3^x\times3^{100}\)
\(=3^x\left[3^0\left(3+3^2+3^3+3^4\right)\right]+...+3^x\left[3^{96}\left(3+3^2+3^3+3^4\right)\right]\)
\(=3^x\left[3^0\left(3+9+27+81\right)\right]+...+3^x\left[3^{96}\left(3+9+27+81\right)\right]\)
\(=3^x\left(3^0\times120\right)+...+3^x\left(3^{96}\times120\right)\)
\(=3^x\times3^0\times120+...+3^x\times3^{96}\times120\)
\(=120\left[3^x\left(3^0+...+3^{96}\right)\right]⋮120\)
Vậy A chia hết cho 120
=3^x(3+3^2+3^3+3^4)+(3^x+4)(3+3^2+3^3+3^4)+...
=3^x.120+(3^x+4).120+...
=120(3^x+3^x+4...) chia hết cho 120
=>x^3+1...(đề bài) chia hết cho 120
(Một số dấu ngoặc mk thêm để cho dễ nhìn nha)
Nhớ k cho mk đó!
1.
\(\left(x+2\right)^3=\frac{1}{8}\)
\(\Rightarrow\left(x+2\right)^3=\left(\frac{1}{2}\right)^3\)
\(\Rightarrow x+2=\frac{1}{2}\)
\(\Rightarrow x=\frac{1}{2}-2\)
\(\Rightarrow x=-\frac{3}{2}\)
Vậy \(x=-\frac{3}{2}.\)
2.
b) Ta có:
\(5^5-5^4+5^3\)
\(=5^3.\left(5^2-5+1\right)\)
\(=5^3.\left(25-5+1\right)\)
\(=5^3.21\)
Vì \(21⋮7\) nên \(5^3.21⋮7.\)
\(\Rightarrow5^5-5^4+5^3⋮7\left(đpcm\right).\)
c) Ta có:
\(2^{19}+2^{21}+2^{22}\)
\(=2^{19}.\left(1+2^2+2^3\right)\)
\(=2^{19}.\left(1+4+8\right)\)
\(=2^{19}.13\)
Vì \(13⋮13\) nên \(2^{19}.13⋮13.\)
\(\Rightarrow2^{19}+2^{21}+2^{22}⋮13\left(đpcm\right).\)
Chúc bạn học tốt!