Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a,\(A=x^2-2x+5=x^2-2.x.1+1^2-1+5\)
\(=\left(x-1\right)^2+4\)
Do \(\left(x-1\right)^2\ge0\) với \(\forall x\) \((\)dấu "=" xảy ra \(\Leftrightarrow x=1)\)
\(\Rightarrow\left(x-1\right)^2+4\ge4\) hay \(A\ge4\) \((\) dấu "=" xảy ra \(\Leftrightarrow x=1)\)
Vậy Min A=4 tại x=1
b,\(B=2x^2-6x=2\left(x^2-3x\right)\)
\(=2.\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\right)\)
\(=2.\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)
Do \(2.\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))
\(\Rightarrow2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\) hay \(B\ge-\dfrac{9}{2}\)
(dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))
Vậy Min B = \(-\dfrac{9}{2}\) tại x=\(\dfrac{3}{2}\)
Bài 2
a,\(A=6x-x^2+3=-\left(x^2-6x-3\right)\)
\(=-\left(x^2-2.x.3+3^2-9-3\right)\)
\(=-\left[\left(x-3\right)^2-12\right]\)
\(=-\left(x-3\right)^2+12\)
Do \(-\left(x-3\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=3)
\(\Rightarrow-\left(x-3\right)^2+12\le12\) hay \(A\le12\) (dấu "=" xảy ra <=> x=3)
Vậy Max A =12 tại x=3
b,\(B=x-x^2+2=-\left(x^2-x-2\right)\)
\(=-\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\)
Do \(-\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\) hay \(B\le\dfrac{9}{4}\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))
Vậy Max B=\(\dfrac{9}{4}\) tại x=\(\dfrac{1}{2}\)
c,\(C=5x-x^2-5=-\left(x^2-5x+5\right)\)
\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}+5\right]\)
\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{5}{4}\right]\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\)
Do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{5}{2}\))
\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\) hay \(C\le\dfrac{5}{4}\) (dấu ''='' xảy ra <=> x=\(\dfrac{5}{2}\))
Vậy Max C=\(\dfrac{5}{4}\) tại x=\(\dfrac{5}{2}\)
Mình làm tiếp phần của Dũng Nguyễn nha.
b) \(4x-x^2-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-2.x.2+4+1\right)\)
\(=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-2\right)^2-1\le-1\)
\(\Rightarrow-\left(x-2\right)^2-1< 0\) với mọi x
Vậy \(4x-x^2-5< 0\) với mọi x
c) \(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x
Vậy \(x^2-x+1>0\) với mọi x
d) \(-x^2+2x-4\)
\(=-\left(x^2-2x+4\right)\)
\(=-\left(x^2-2x+1+3\right)\)
\(=-\left(x-1\right)^2-3\)
Vì \(-\left(x-1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-1\right)^2-3\le-3\)
\(\Rightarrow-\left(x-1\right)^2-3< 0\)
Vậy \(-x^2+2x-4< 0\) với mọi x
a, Sửa đề:
-x2-2x-2
=-(x2+2x+2)
=-(x2+2x+1+1)
=-[(x+1)2+1]<0\(\forall\)x
b, -x2-6x-11
=-(x2+6x+11)
=-(x2+2.x.3+32+2)
=-[(x+3)2+2]<0\(\forall\)x
Đúng tick nha,
a, -x - 2x - 2
= -(x+2x+1)-1
= -(x+1)2 -1
Có (x + 1)2 ≥0 ⇒- (x + 1) ≤ 0 ⇒ -(x + 1)2 - 1≤ -1
Do đó - x - 2x - 2 < 0 ∀ x
b, -x2 - 6x - 11
= -(x2 + 2.3.x+ 32)-2
= -(x+3)2 - 2
Có (x + 3)2 ≥0 ⇒- (x + 3) ≤ 0 ⇒ -(x + 3)2 - 2 ≤ -2
Do đó -x2 - 6x - 11 <0 ∀ x
Câu 2. \(\dfrac{2x-1}{2-x}>1\) ( x # 2)
⇔ \(\dfrac{2x-1}{2-x}-1>0\)
⇔ \(\dfrac{2x-1-2+x}{2-x}>0\)
⇔ \(\dfrac{3x-3}{2-x}>0\)
Lập bảng xét dấu , ta có :
Vậy , BPT có nghiệm : 1 < x < 2
Câu 3. Áp dụng BĐT : ( a - b)2 ≥ 0 ∀a,b ⇒ a2 + b2 ≥ 2ab
⇒x2 + y2 ≥ 2xy ( 1)
x2 + z2 ≥ 2xz ( 2)
y2 + z2 ≥ 2yz ( 3)
Cộng từng vế của ( 1 ; 2; 3) ta được ĐPCM
Đặt \(A=2x^4+2x+1\)
\(=2x^4+4x^3+2x^2-2x^2-4x^3+2x+1\)
\(=\left(2x^4-4x^3+2x^2\right)+\left(4x^3-2x^2+2x\right)+1\)
\(=2x^2\left(x^2-2x+1\right)+2x\left(2x^2-x+1\right)+1\)
\(=2x^2\left(x-1\right)^2+2x\left[\left(x\sqrt{2}\right)^2-2.x\sqrt{2}.\frac{1}{2\sqrt{2}}+\frac{1}{8}-\frac{1}{8}+1\right]+1\)
\(=2x^2\left(x-1\right)^2+2x\left[\left(x\sqrt{2}-\frac{1}{2\sqrt{2}}\right)^2+\frac{7}{8}\right]+1\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0;\forall x\\\left(x\sqrt{2}-\frac{1}{2\sqrt{2}}\right)^2\ge0;\forall x\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x^2\left(x-1\right)^2\ge0;\forall x\\\left(x\sqrt{2}-\frac{1}{2\sqrt{2}}\right)^2+\frac{7}{8}>0;\forall x\end{cases}}\)
\(\Rightarrow2x^2\left(x-1\right)^2+2x\left[\left(x\sqrt{2}-\frac{1}{2\sqrt{2}}\right)^2+\frac{7}{8}\right]+1>0;\forall x\)
Hay \(A>0;\forall x\)
M = x^2 - 4x
= x^2 - 4x + 4 - 4
= (x^2 - 4x + 4 ) - 4
=(x - 2 )^2 - 4
Vì (x - 2 )^2 \(\ge\)0 => (x - 2 )^2 - 4 \(\ge\) - 4 ( với \(\forall\) x )
Dấu '' = '' sảy ra <=> (x - 2 )^2 = 0
<=> x - 2 = 0
<=> x = 2
Vậy min M = - 4 Khi x = 2
M = x2 - 4x = (x2 - 4x + 4) - 4 = (x - 2)2 - 4
Vì (x - 2)2 ≥ 0 với mọi x
Mà (x - 2)2 - 4 ≥ - 4 với mọi x
Vậy M đạt giá trị nhỏ nhất <=> (x - 2)2 = 0 <=> x = 2
D = x2 - 2x + 5 = (x2 - 2x + 1) + 4 = (x - 1)2 + 4
Vì (x - 1)2 ≥ 0 với mọi x
Mà (x - 1)2 + 4 ≥ 4 với mọi x
=> (x - 1)2 + 4 > 0 (luôn dương với mọi x)
=> x2 - 2x + 5 > 0 (luôn dương với mọi x)
\(a,\left(2x-3\right)n-2n\left(n+2\right)\)
\(=n\left(2x-3-2n-4\right)\)
\(=-7n\)
Vì \(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM
\(b,n\left(2n-3\right)-2n\left(n+1\right)\)
\(=n\left(2n-3-2n-2\right)\)
\(=-5n⋮5\) (ĐPCM)
Rút gọn
\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)
\(=-76\)
\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)
\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)
\(=9\)
\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)
\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)
= -3
Bài làm:
Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x,y,z\right)\)
x2 + 4y2 + z2 - 2x - 6z + 8y + 15
= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1
= ( x - 1 )2 + ( 2y + 2 )2 + ( z - 3 )2 + 1 ≥ 1 > 0 ∀ x,y,z ( đpcm )
\(2x^2+2x+1=x^2+x^2+2x+1=x^2+\left(x+1\right)^2\)
Nếu \(x^2\ge0\) thì \(\left(x+1\right)^2>0\)
Ngược lại \(\left(x+1\right)^2\ge0\) thì \(x^2>0\)
=> x2 + (x + 1)2 > 0 \(\forall x\)
hay \(2x^2+2x+1>0\forall x\)
--> đpcm
\(=x^2+x^2+2x+1\)
\(=x^2+\left(x+1\right)^2\)
Ta có: (x+1)2 \(\ge\) 0 với mọi x
\(\Rightarrow\) x2 + (x+1)2 > 0 với mọi x
Vậy bài toán trên luôn dương