Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để A là phân số thì n+3<>0
hay n<>-3
b: Để A là số nguyên thì \(3n-2⋮n+3\)
\(\Leftrightarrow n+3\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-2;-4;8;-14\right\}\)
a. \(n\ne-3\)
b.
\(A\in Z\)
\(\Leftrightarrow3n-2⋮n+3\)
\(\Leftrightarrow3n+9-11⋮n+3\)
\(\Leftrightarrow3\times\left(n+3\right)-11⋮n+3\)
\(\Leftrightarrow11⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(11\right)\)
\(\Leftrightarrow n+3\in\left\{-11;-1;1;11\right\}\)
\(\Leftrightarrow n\in\left\{-14;-4;-2;8\right\}\)
Chúc bạn học tốt ^^
Để A là số nguyên thì 3 phải chia hết cho n + 5
=> n + 5 sẽ thuộc Ư(3)
Mà 3 = 1.3 = -1.(-3)
Ta có bảng:
n + 5 | 1 | 3 | -1 | -3 |
n | -4 | -2 | -6 | -8 |
Vậy n = -4 hoặc -2 hoặc -6 hoặc -8.
Tik nhá
B1: để x là số nguyên thì: 5 chia hết cho 2x+1
=> \(2x+1\in U\left(5\right)\)
+> \(2x+1\in\left\{1;-1;5;-5\right\}\)
=> \(x\in\left\{0;-1;2;-3\right\}\)
Bài 16*:
Giải
Gọi ƯCLN(2n+1;3n=2)=d
⇒2n+1 ⋮ d ⇒ 3.(2n+1) ⋮ d ⇒6n+3 ⋮ d
3n+2 ⋮ d 2.(3n+2) ⋮ d 6n+4 ⋮ d
⇒(6n+4)-(6n+3) ⋮ d
⇒ 1 ⋮ d
⇒ d=1
Vậy 2n+1/3n+2 là phân số tối giản.
Chúc bạn học tốt!
a) Để A là phân số thì \(n-3\ne0\)
hay \(n\ne3\)
b) Để A=-1/2 thì \(\dfrac{7}{n-3}=\dfrac{-1}{2}\)
\(\Leftrightarrow-1\left(n-3\right)=14\)
\(\Leftrightarrow n-3=-14\)
hay n=-11(thỏa ĐK)
Vậy: Để A=-1/2 thì n=-11
Câu 1:
a) \(\dfrac{n-5}{n-3}\)
Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)
\(n-5⋮n-3\)
\(\Rightarrow n-3-2⋮n-3\)
\(\Rightarrow2⋮n-3\)
\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng giá trị:
n-1 | -2 | -1 | 1 | 2 |
n | -1 | 0 | 2 | 3 |
Vậy \(n\in\left\{-1;0;2;3\right\}\)
b) \(\dfrac{2n+1}{n+1}\)
Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)
\(2n+1⋮n+1\)
\(\Rightarrow2n+2-1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
n-1 | -1 | 1 |
n | 0 | 2 |
Vậy \(n\in\left\{0;2\right\}\)
Câu 2:
a) \(\dfrac{n+7}{n+6}\)
Gọi \(ƯCLN\left(n+7;n+6\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\)
\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản
b) \(\dfrac{3n+2}{n+1}\)
Gọi \(ƯCLN\left(3n+2;n+1\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản