K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2023

a: ΔOHB cân tại O

mà OI là đường trung tuyến

nên OI\(\perp\)HB

I là trung điểm của HB

=>\(IH=IB=\dfrac{HB}{2}=\dfrac{8}{2}=4\left(cm\right)\)

ΔOIB vuông tại I

=>\(OB^2=OI^2+IB^2\)

=>\(OB^2=3^2+4^2=25\)

=>OB=5(cm)

=>R=5(cm)

Xét tứ giác MAOI có

\(\widehat{MAO}+\widehat{MIO}=90^0+90^0=180^0\)

=>MAOI là tứ giác nội tiếp đường tròn đường kính MO

Tâm là trung điểm của MO

b: Xét (O) có

ΔAHB nội tiếp

AB là đường kính

Do đó; ΔAHB vuông tại H

=>AH\(\perp\)HB tại H

=>AH\(\perp\)MB tại H

Xét ΔMAB vuông tại A có AH là đường cao

nên \(MA^2=MH\cdot MB\)

c: Xét (O) có

MA,MK là tiếp tuyến

Do đó: MA=MK

mà OA=OK

nên MO là đường trung trực của AK

\(MA^2=MH\cdot MB\)

MA=MK

Do đó: \(MK^2=MH\cdot MB\)

=>\(\dfrac{MK}{MH}=\dfrac{MB}{MK}\)

Xét ΔMKB và ΔMHK có

\(\dfrac{MK}{MH}=\dfrac{MB}{MK}\)

\(\widehat{KMB}\) chung

Do đó: ΔMKB đồng dạng với ΔMHK

=>\(\widehat{MBK}=\widehat{MHK}\)