K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

Ta có : 

\(\frac{9x-18}{18y-54}=\frac{9\left(x-2\right)}{9\left(2y-6\right)}=\frac{x-2}{2y-6}\) (1)

\(\frac{2x-4}{4y-12}=\frac{2\left(x-2\right)}{2\left(2y-6\right)}=\frac{x-2}{2y-6}\) (2)

Từ (1) ; (2) => \(\frac{9x-18}{18y-54}=\frac{2x-4}{4y-12}\) (đpcm)

26 tháng 2 2017

bạn giải bằng 2 cách dc ko?

29 tháng 1 2019

b) \(\dfrac{7x-21}{14x-42}=\dfrac{2}{4}\)

\(\Leftrightarrow\dfrac{7\left(x-3\right)}{14\left(x-3\right)}=\dfrac{2}{4}\)

Ở tử và mẫu đều có chung x-3 nên loại

\(\Rightarrow\dfrac{7}{14}=\dfrac{2}{4}\Leftrightarrow\dfrac{2}{4}=\dfrac{2}{4}\) (đpcm)

c) \(\dfrac{9x-18}{18y-54}=\dfrac{2x-4}{4y-12}\)

\(\Leftrightarrow\dfrac{9\left(x-2\right)}{18\left(y-3\right)}=\dfrac{2\left(x-2\right)}{4\left(y-3\right)}\)

Ở tử VT và VP đều có tử là x-2 và mẫu là y-3 nên loại

\(\Leftrightarrow\dfrac{9}{18}=\dfrac{2}{4}\Leftrightarrow\dfrac{1}{2}=\dfrac{1}{2}\) (đpcm)

29 tháng 1 2019

thanks học giỏi ghê haha

3 tháng 11 2023

\(2x+3y⋮17\Rightarrow34x+17y⋮17\)

\(\Rightarrow2x+3y+34x+17y=36x+20y=4\left(9x+5y\right)⋮17\)

\(\Rightarrow9x+5y⋮17\)

3 tháng 4 2017

Vì 7x+4y \(⋮\)37

\(\Rightarrow\)13.(7x+4y) \(⋮37\)

Ta xét biểu thức sau:

7.(13x+18y) - 13.(7x+4y)

=91x+126y - 91x - 52y

= 74y \(⋮37\)

Vì 74y\(⋮37\)

\(13.\left(7x+4y\right)⋮37\)

=>7.(13x+18y)\(⋮37\)

Mà (7,37)=1 

=>13x+18y\(⋮37\)

Vậy nếu 7x+4y chia hết cho 37 thì 13x+18y cũng chia hết cho 37

3 tháng 4 2017

THANK

9 tháng 10 2017

2 hé s ớ

9 tháng 10 2017

lộn x = 1

31 tháng 12 2016

\(N=2^{15}-2^{12}+2^4-2\)

\(N=2^{12}.\left(2^3-1\right)+16-2\)

\(N=2^{12}.7+14\)

\(\left(2^{12}.7\right)⋮7\)

\(14⋮7\)

\(\Rightarrow N⋮7\)

31 tháng 12 2016

Ta có:

\(N=\left(2^{15}-2^{12}\right)+\left(2^4-2\right)\)

\(N=\left(2^{12}.2^3-2^{12}\right)+\left(2.2^3-2\right)\)

\(N=2^{12}.\left(2^3-1\right)+2.\left(2^3-1\right)\)

\(N=\left(2^3-1\right).\left(2^{12}+2\right)\)

\(N=\left(8-1\right).\left(2^{12}+2\right)\)

\(N=7.\left(2^{12}+2\right)\) chia hết cho 7 \(\left(đpcm\right)\)

a) \(\left(x-7\right)\left(x+12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-12\end{matrix}\right.\)

Vậy: x∈{7;-12}

b) \(\left(3x-15\right)\left(6-2x\right)=0\)

\(3\left(x-5\right)\cdot2\cdot\left(3-x\right)=0\)

hay \(6\left(x-5\right)\left(3-x\right)=0\)

Vì 6≠0

nên \(\left[{}\begin{matrix}x-5=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)

Vậy: x∈{3;5}

c) \(\left(3x+9\right)\left(4y-8\right)=0\)

\(3\left(x+3\right)\cdot4\left(y-2\right)=0\)

hay \(12\left(x+3\right)\left(y-2\right)=0\)

Vì 12≠0

nên \(\left\{{}\begin{matrix}x+3=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\)

Vậy: x=-3 và y=2

d) \(\left(2y-16\right)\left(8x-24\right)=0\)

\(2\left(y-8\right)\cdot8\left(x-3\right)=0\)

hay 16(y-8)(x-3)=0

Vì 16≠0

nên \(\left\{{}\begin{matrix}y-8=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=8\\x=3\end{matrix}\right.\)

Vậy: y=8 và x=3

e) \(\left(22-11y\right)\left(9x-18\right)=0\)

\(11\left(2-y\right)9\left(x-2\right)=0\)

hay 99(2-y)(x-2)=0

Vì 99≠0

nên \(\left\{{}\begin{matrix}2-y=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=2\end{matrix}\right.\)

Vậy: x=2 và y=2

g) \(\left(7y+14\right)\cdot\left(9x-18\right)=0\)

⇔7(y+2)*9(x-2)=0

hay 63(y+2)(x-2)=0

Vì 63≠0

nên \(\left\{{}\begin{matrix}y+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=2\end{matrix}\right.\)

Vậy: y=-2 và x=2

h) xy=3

⇒x,y∈Ư(3)

⇒x,y∈{1;-1;3;-3}

*Trường hợp 1:

\(\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

*Trường hợp 2:

\(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

*Trường hợp 3:

\(\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\)

*Trường hợp 4:

\(\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)

Vậy: x∈{1;-1;3;-3} và y∈{1;-1;3;-3}

i) x*y=-5

⇔x,y∈Ư(-5)

⇔x,y∈{1;-1;5;-5}

*Trường hợp 1:

\(\left\{{}\begin{matrix}x=1\\y=-5\end{matrix}\right.\)

*Trường hợp 2:

\(\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\)

*Trường hợp 3:

\(\left\{{}\begin{matrix}x=-5\\y=1\end{matrix}\right.\)

*Trường hợp 4:

\(\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\)

Vậy: x∈{1;5;-1;-5} và y∈{1;5;-1;-5}

k) \(\left(x+4\right)\left(y-5\right)=-3\)

⇔x+4; y-5∈Ư(-3)

⇔x+4; y-5∈{1;3;-3;-1}

*Trường hợp 1:

\(\left\{{}\begin{matrix}x+4=-1\\y-5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=8\end{matrix}\right.\)

*Trường hợp 2:

\(\left\{{}\begin{matrix}x+4=1\\y-5=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\)

*Trường hợp 3:

\(\left\{{}\begin{matrix}x+4=3\\y-5=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)

*Trường hợp 4:

\(\left\{{}\begin{matrix}x+4=-3\\y-5=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=6\end{matrix}\right.\)

Vậy: x∈{-5;-3;-1;-7} và y∈{8;2;4;6}

m) (x-9)(y-5)=-1

⇔x-9; y-5∈Ư(-1)

⇔x-9; y-5∈{1;-1}

*Trường hợp 1:

\(\left\{{}\begin{matrix}x-9=1\\y-5=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=4\end{matrix}\right.\)

*Trường hợp 2:

\(\left\{{}\begin{matrix}x-9=-1\\y-5=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=6\end{matrix}\right.\)

Vậy: x∈{10;8} và y∈{4;6}

n) x+3⋮x+4

⇔x+4-1⋮x+4

⇔-1⋮x+4

hay x+4∈Ư(-1)

⇔x+4∈{1;-1}

⇔x∈{-3;-5}

Vậy: x∈{-3;-5}

p)(x-5)⋮x+2

⇔x+2-7⋮x+2

hay -7⋮x+2

⇔x+2∈Ư(-7)

⇔x+2∈{1;-1;7;-7}

hay x∈{-1;-3;5;-9}

Vậy: x∈{-1;-3;5;-9}