K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2021

Tham khảo

Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*) 
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6 

n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2 
=> A chia hết cho 2 

n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3 
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)

Vì n+1;n+2;n+3 là ba số tự nhiên liên tiếp

nên \(\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3!\)

hay \(\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮6\)