Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi d=ƯCLN(15n+1;30n+1)
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>Đây là phân số tối giản
b: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>Phân số tối giản
Gọi \(d=ƯC\left(3n+2;6n+5\right)\) với \(d\ge1;d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\6n+5⋮d\end{matrix}\right.\)
\(\Rightarrow6n+5-2\left(3n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow3n+2\) và \(6n+5\) nguyên tố cùng nhau
Hay P tối giản
a,Gọi ƯCLN(n+3,2n+7)=d
n+3⋮d ⇒2n+6⋮d
2n+7⋮d ⇒2n+7⋮d
(2n+7)-(2n+6)⋮d
1⋮d ⇒ƯCLN(n+3,2n+7)=1
Vậy phân số n+3/2n+7 là phân số tối giản
a,Gọi ƯCLN(3n+7,6n+15)=d
3n+7⋮d ⇒6n+14⋮d
6n+15⋮d ⇒6n+15⋮d
(6n+15)-(6n+14)⋮d
1⋮d ⇒ƯCLN(3n+7,6n+15)=1
Vậy phân số 3n+7/6n+15 là phân số tối giản
a: Gọi a=UCLN(5n+14;n+3)
\(\Leftrightarrow5n+14-5n-15⋮a\)
\(\Leftrightarrow-1⋮a\)
hay a=1
=>5n+14/n+3 là phân số tối giản
b: Gọi d=UCLN(3n-2;4n-3)
\(\Leftrightarrow4\left(3n-2\right)-3\left(4n-3\right)⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>3n-2/4n-3 là phân số tối giản
a: Gọi d=ƯCLN(15n+1;30n+1)
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>Đây là phân số tối giản
b: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>Phân số tối giản
a) Đặt \(d=\left(n+3,2n+7\right)\).
Suy ra
\(\hept{\begin{cases}n+3⋮d\\2n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+7⋮d\end{cases}}\Rightarrow\left(2n+7\right)-2\left(n+3\right)=1⋮d\)
\(\Rightarrow d=1\).
Do đó ta có đpcm.
b) Tương tự ý a).
a) Đặt \(d=\left(15n+1,30n+1\right)\).
Suy ra \(\hept{\begin{cases}15n+1⋮d\\30n+1⋮d\end{cases}}\Rightarrow2\left(15n+1\right)-\left(30n+1\right)=1⋮d\Rightarrow d=1\).
Ta có đpcm.
b) Đặt \(d=\left(n^3+2n,n^4+3n^2+1\right)\).
Suy ra \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+2n\right)=n^2+1⋮d\)
\(\Rightarrow\left(n^4+3n^2+1\right)-n^2\left(n^2+1\right)-2\left(n^2+1\right)=-1⋮d\)
Suy ra \(d=1\).
Suy ra đpcm.
Gọi \(d=ƯC\left(6n+7;3n+2\right)\) với \(d\ge1;d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}6n+7⋮d\\3n+2⋮d\end{matrix}\right.\)
\(\Rightarrow6n+7-2\left(3n+2\right)⋮d\)
\(\Rightarrow3⋮d\) \(\Rightarrow\left[{}\begin{matrix}d=1\\d=3\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}6n+7=3\left(2n+2\right)+1⋮̸3\\3n+2⋮̸3\end{matrix}\right.\) \(\Rightarrow d\ne3\)
\(\Rightarrow d=1\Rightarrow6n+7\) và \(3n+2\) nguyên tố cùng nhau
Hay \(\dfrac{6n+7}{3n+2}\) tối giản với mọi n tự nhiên
Gọi d là ƯC(6n+7;3n+2) với d≠0;d ≥1(d∈N)
⇒ 6n+7 ⋮ d
3n+2 ⋮ d
⇒6n+7 - 2(3n+2)⋮ d
⇒3⋮d
d∈(1;3)
Vậy 6n+7/3n+2 là phân số tối giản vì là nguyên tố cùng nha
a: Gọi d=UCLN(4n+1;6n+1)
\(\Leftrightarrow3\left(4n+1\right)-2\left(6n+1\right)⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>4n+1/6n+1 là phân số tối giản
b: Gọi a=UCLN(5n+3;3n+2)
\(\Leftrightarrow3\left(5n+3\right)-5\left(3n+2\right)⋮a\)
\(\Leftrightarrow-1⋮a\)
=>a=1
=>5n+3/3n+2 là phân số tối giản