K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2016

a) Vì ( n+6 ) (n+7) là tích 2 số tự nhiên liên tiếp

=> (n+6)(n+7) chia hết cho 2

b) n^2 + n + 3 = n(n+1) +3

 Vì  n(n+1) là tích 2 số tự nhiên liên tiếp => n(n+1) chia hết cho 2

mà 3 ko chia hết cho 2

=> n(n+1) +3 ko chia hết cho 2

=>n^2 + n  ko chia hết cho 2

12 tháng 6 2017

a) Với mọi n là số lẻ hoặc số chẵn thì \(A=\left(n+6\right)\left(n+7\right)\) luôn luôn là số chẵn . Do đó \(A⋮2\)với mọi \(n\in Z\)

b) \(B=n\left(n+1\right)+3\)

Vì \(n\left(n+1\right)\)là tích của hai số nguyên liên tiếp nên là số chẵn , do đó \(n\left(n+1\right)⋮2\), nhưng 3 không chia hết cho 2 

\(\Rightarrow\)B không chia hết cho 2 với mọi \(n\in Z\)

12 tháng 6 2017

Nếu n là số chẵn thì (n + 6) chia hết cho 2 

=> (n + 6)(n + 7) chia hết cho 2 

Nếu n là số lẻ thì (n + 7) chia hết cho 2 

=> (n + 6)(n + 7) chia hết cho 2 

Vậy với mọi n nguye thì (n + 6)(n + 7) đều chia hết cho 2 

28 tháng 1 2015

a. Giả sự n chia hết cho 2 => n+6 chia hết cho 2 => A chia hết cho 2

   Giả sư n ko chia hết cho 2 => n + 7 chia hết cho 2 => A chia hết cho 2

 

b. Giả sử n chia hết cho 2 => n^2 chia hết cho 2 => n^2 + n chia hết cho 2 => B ko chia hết cho 2

   Gia sử n ko chia hết cho 2 => n^2 ko chia hết cho 2. => n^2 + n chia hết cho 2 => B ko chia hết cho 2

13 tháng 1 2015

với mọi số nguyên n thì (n+6).(n+7) luôn là tích 2 số nguyên liên tiếp mà trong 2 số nguyên liên tiếp luôn tồn tại 1 số chẵn nên suy ra tích 2 số nguyên đó luôn chia hết cho 2

 Vậy (n+6).(n+7) chia hết cho 2 với mọi n thuộc Z(đpcm)

14 tháng 2 2023

\(B=n^2+n+3\)
\(=n.n+n+3\)
\(=n\left(n+1\right)+3\)
Mà \(n\left(n+1\right)⋮2\) với mọi \(n\in Z\)
\(\Rightarrow B⋮̸2\)

21 tháng 10 2015

2,

+ n chẵn

=> n(n+5) chẵn 

=> n(n+5) chia hết cho 2

+ n lẻ

Mà 5 lẻ

=> n+5 chẵn => chia hết cho 2

=> n(n+5) chia hết cho 2

KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N

21 tháng 10 2015

3, 

A = n2+n+1 = n(n+1)+1

a, 

+ Nếu n chẵn

=> n(n+1) chẵn 

=> n(n+1) lẻ => ko chia hết cho 2

+ Nếu n lẻ

Mà 1 lẻ

=> n+1 chẵn

=> n(n+1) chẵn

=> n(n+1)+1 lẻ => ko chia hết cho 2

KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)

b, + Nếu n chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

+ Nếu n chia 5 dư 1

=> n+1 chia 5 dư 2

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 2

=> n+1 chia 5 dư 3

=> n(n+1) chia 5 dư 1

=> n(n+1)+1 chia 5 dư 2

+ Nếu n chia 5 dư 3

=> n+1 chia 5 dư 4

=> n(n+1) chia 5 dư 2

=> n(n+1)+1 chia 5 dư 3

+ Nếu n chia 5 dư 4

=> n+1 chia hết cho 5

=> n(n+1) chia hết cho 5

=> n(n+1)+1 chia 5 dư 1

KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)