Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi UCLN(5n+3; 3n+2)=d khi đó 5n+3 chia hết cho d suy ra 15n+9 chia hết cho d (1)
3n+2 chia hết cho d nên 15n + 10 cũng chia hết cho d (2) ( dử dụng tính chất a chia hết cho m thì a.n cũng chia hết cho m)
từ 1 và 2 suy ra (15n+10)-(15n+9) chia hết cho d hay 1 chia hết cho d ( tính chất chia hết của 1 tổng- hiệu). vậy d=1
vậy UCLN(5n+3; 3n+2)=1 hay phân số trên tối giản
lưu ý: để chứng minh 1 phân số tối giản ta chứng minh UCLN của tử và mẫu bằng 1. còn trong tập Z ta cm UCLN = +-1
a) Đặt \(d=\left(15n+1,30n+1\right)\).
Suy ra \(\hept{\begin{cases}15n+1⋮d\\30n+1⋮d\end{cases}}\Rightarrow2\left(15n+1\right)-\left(30n+1\right)=1⋮d\Rightarrow d=1\).
Ta có đpcm.
b) Đặt \(d=\left(n^3+2n,n^4+3n^2+1\right)\).
Suy ra \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+2n\right)=n^2+1⋮d\)
\(\Rightarrow\left(n^4+3n^2+1\right)-n^2\left(n^2+1\right)-2\left(n^2+1\right)=-1⋮d\)
Suy ra \(d=1\).
Suy ra đpcm.
a: Gọi d=ƯCLN(15n+1;30n+1)
=>30n+2-30n-1 chia hết cho d
=>1 chia hết cho d
=>Đây là phân số tối giản
b: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>Phân số tối giản
đặt:ƯCLN của 2n + 3/3n +4 là d (d thuộc(nên viết kí hiệu) Z
suy ra (2n+3)chia hết cho (kí hiệu) d
(3n+4)chia hết cho d
suy ra 3.(2n + 3)chia hết cho d
2.(3n +4)chia hết cho d
suy ra 3.2n+3.3chia hết cho d
2.3n+2.4chia hết cho d
suy ra 6n+9 chia hết cho d
6n +8 chia hết cho d
suy ra (6n+9)-(6n+8)chia hết cho d
suy ra 1chia hết cho d
suy ra d =1
vậy 2n+3/3n+4
a) Gọi d là Ư C L N ( n+1; 2n+3)
ta có: n +1 chia hết cho d => 2.(n+1) chia hết cho d => 2n + 2 chia hết cho d
2n + 3 chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản
b) Gọi d là Ư C L N ( 2n+1; 3n+2)
ta có: 2n+1 chia hết cho d => 3.(2n+1) chia hết cho d => 6n + 3 chia hết cho d
3n +2 chia hết cho d => 2.(3n+2) chia hết cho d => 6n + 4 chia hết cho d
=> 6n + 4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
\(\Rightarrow\frac{2n+1}{3n+2}\) là phân số tối giản
c) Gọi d là Ư C L N ( n; n+1)
ta có: n chia hết cho d
n + 1 chia hết cho d
=> n +1 - n chia hết cho d
=> 1 chia hết cho d
\(\Rightarrow\frac{n}{n+1}\) là phân số tối giản
gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:
\(\text{(2n+3)-(n-1) ⋮d}\)
\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)
\(\Rightarrow2n+3-2n-2⋮d\)
\(\Rightarrow2n-2n+3-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n
a,Gọi ƯCLN(n+3,2n+7)=d
n+3⋮d ⇒2n+6⋮d
2n+7⋮d ⇒2n+7⋮d
(2n+7)-(2n+6)⋮d
1⋮d ⇒ƯCLN(n+3,2n+7)=1
Vậy phân số n+3/2n+7 là phân số tối giản
a,Gọi ƯCLN(3n+7,6n+15)=d
3n+7⋮d ⇒6n+14⋮d
6n+15⋮d ⇒6n+15⋮d
(6n+15)-(6n+14)⋮d
1⋮d ⇒ƯCLN(3n+7,6n+15)=1
Vậy phân số 3n+7/6n+15 là phân số tối giản
a: Gọi d=UCLN(n+1;n+2)
\(\Leftrightarrow n+2-n-1⋮d\)
=>d=1
Vậy: n+1/n+2 là phân số tối giản
b: Gọi a=UCLN(2n+3;3n+4)
\(\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮a\\6n+8⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)
Vậy: 2n+3/3n+4 là phân số tối giản