K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi d=UCLN(n+1;n+2)

\(\Leftrightarrow n+2-n-1⋮d\)

=>d=1

Vậy: n+1/n+2 là phân số tối giản

b: Gọi a=UCLN(2n+3;3n+4)

\(\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮a\\6n+8⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)

Vậy: 2n+3/3n+4 là phân số tối giản

6 tháng 4 2015

gọi UCLN(5n+3; 3n+2)=d khi đó 5n+3 chia hết cho d suy ra 15n+9 chia hết cho d (1)

3n+2 chia hết cho d nên 15n + 10 cũng chia hết cho d (2)   ( dử dụng tính chất a chia hết cho m thì a.n cũng chia hết cho m)

từ 1 và 2 suy ra (15n+10)-(15n+9) chia hết cho d hay 1 chia hết cho d ( tính chất chia hết của 1 tổng- hiệu). vậy d=1

vậy UCLN(5n+3; 3n+2)=1 hay phân số trên tối giản

lưu ý: để chứng minh 1 phân số tối giản ta chứng minh UCLN của tử và mẫu bằng 1. còn trong tập Z ta cm UCLN = +-1

DD
31 tháng 8 2021

a) Đặt \(d=\left(15n+1,30n+1\right)\).

Suy ra \(\hept{\begin{cases}15n+1⋮d\\30n+1⋮d\end{cases}}\Rightarrow2\left(15n+1\right)-\left(30n+1\right)=1⋮d\Rightarrow d=1\).

Ta có đpcm. 

b) Đặt \(d=\left(n^3+2n,n^4+3n^2+1\right)\).

Suy ra \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+2n\right)=n^2+1⋮d\)

\(\Rightarrow\left(n^4+3n^2+1\right)-n^2\left(n^2+1\right)-2\left(n^2+1\right)=-1⋮d\)

Suy ra \(d=1\).

Suy ra đpcm. 

22 tháng 4 2023

a: Gọi d=ƯCLN(15n+1;30n+1)

=>30n+2-30n-1 chia hết cho d

=>1 chia hết cho d

=>Đây là phân số tối giản

b: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>Phân số tối giản

22 tháng 3 2021

đặt:ƯCLN của 2n + 3/3n +4 là d (d thuộc(nên viết kí hiệu) Z

suy ra (2n+3)chia hết cho (kí hiệu) d

           (3n+4)chia hết cho d

suy ra 3.(2n + 3)chia hết cho d

           2.(3n +4)chia hết cho d

suy ra 3.2n+3.3chia hết cho d

           2.3n+2.4chia hết cho d

suy ra 6n+9 chia hết cho d

          6n +8 chia hết cho d

suy ra (6n+9)-(6n+8)chia hết cho d

suy ra 1chia hết cho d

 suy ra d =1

vậy 2n+3/3n+4

22 tháng 3 2021

chu mi la , mai mik ik hok ùi ,chu mi la

16 tháng 5 2018

a) Gọi d là Ư C L N ( n+1; 2n+3)

ta có: n +1 chia hết cho d => 2.(n+1) chia hết cho d => 2n + 2 chia hết cho d

        2n + 3 chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d 

=> 1 chia hết cho d

\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản

b) Gọi d là Ư C L N ( 2n+1; 3n+2)

ta có: 2n+1 chia hết cho d => 3.(2n+1) chia hết cho d => 6n + 3 chia hết cho d

        3n +2 chia hết cho d => 2.(3n+2) chia hết cho d => 6n + 4 chia hết cho d

=> 6n + 4 - 6n - 3 chia hết cho d

=> 1 chia hết cho d

\(\Rightarrow\frac{2n+1}{3n+2}\) là phân số tối giản

c) Gọi d là Ư C L N ( n; n+1)

ta có: n chia hết cho d

         n + 1 chia hết cho d

=> n +1 - n chia hết cho d

=> 1 chia hết cho d

\(\Rightarrow\frac{n}{n+1}\) là phân số tối giản

26 tháng 6 2018

gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:

\(\text{(2n+3)-(n-1) ⋮d}\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow2n-2n+3-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n

11 tháng 4 2021

a,Gọi ƯCLN(n+3,2n+7)=d

n+3⋮d ⇒2n+6⋮d

2n+7⋮d ⇒2n+7⋮d

(2n+7)-(2n+6)⋮d

1⋮d ⇒ƯCLN(n+3,2n+7)=1

Vậy phân số n+3/2n+7 là phân số tối giản

11 tháng 4 2021

a,Gọi ƯCLN(3n+7,6n+15)=d

3n+7⋮d ⇒6n+14⋮d

6n+15⋮d ⇒6n+15⋮d

(6n+15)-(6n+14)⋮d

1⋮d ⇒ƯCLN(3n+7,6n+15)=1

Vậy phân số 3n+7/6n+15 là phân số tối giản