Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Gọi ƯCLN(n+3,2n+7)=d
n+3⋮d ⇒2n+6⋮d
2n+7⋮d ⇒2n+7⋮d
(2n+7)-(2n+6)⋮d
1⋮d ⇒ƯCLN(n+3,2n+7)=1
Vậy phân số n+3/2n+7 là phân số tối giản
a,Gọi ƯCLN(3n+7,6n+15)=d
3n+7⋮d ⇒6n+14⋮d
6n+15⋮d ⇒6n+15⋮d
(6n+15)-(6n+14)⋮d
1⋮d ⇒ƯCLN(3n+7,6n+15)=1
Vậy phân số 3n+7/6n+15 là phân số tối giản
Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*)
\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)
Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)
\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)
Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n+3 là số lẻ nên
\(\Rightarrow d=1\left(đpcm\right)\)
c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
a) Đặt \(d=\left(n+3,2n+7\right)\).
Suy ra
\(\hept{\begin{cases}n+3⋮d\\2n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+7⋮d\end{cases}}\Rightarrow\left(2n+7\right)-2\left(n+3\right)=1⋮d\)
\(\Rightarrow d=1\).
Do đó ta có đpcm.
b) Tương tự ý a).
Gọi d là ƯC(n+1; 2n+3)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+2\right)-\left(2n+3\right)⋮d\)
\(\Rightarrow2n+2-2n-3⋮d\)
\(\Rightarrow\left(2n-2n\right)-\left(3-2\right)⋮d\)
\(\Rightarrow0-1⋮d\)
\(\Rightarrow-1⋮d\)
\(\Rightarrow d\inƯ\left(-1\right)=\left\{-1;1\right\}\)
\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản với mọi n thuộc N
Để chứng minh một phân số là tối giản, ta cần chứng minh ƯCLN (tử, mẫu) = 1
Bài giải
a) Ta có phân số: \(\frac{n+1}{3n+4}\)(n \(\inℕ\))
Gọi ƯCLN (n + 1; 3n + 4) là d (d \(\inℕ^∗\))
=> n + 1 \(⋮\)d; 3n + 4 \(⋮\)d
=> 3n + 4 - 3(n + 1) \(⋮\)d
=> 1 \(⋮\)d
=> ƯCLN (n + 1; 3n + 4) = 1
=> \(\frac{n+1}{3n+4}\)là phân số tối giản
=> ĐPCM
b) Ta có phân số: \(\frac{2n+3}{3n+5}\)(n \(\inℕ\))
Gọi ƯCLN (2n + 3; 3n + 5) là d (d \(\inℕ^∗\))
=> 2n + 3 \(⋮\)d; 3n + 5 \(⋮\)d
=> 2(3n + 5) - 3(2n + 3) \(⋮\)d
=> 1 \(⋮\)d
=> ƯCLN (2n + 3; 3n + 5) = 1
=> \(\frac{2n+3}{3n+5}\)là phân số tối giản
=> ĐPCM
a) Gọi (n+1,3n+4) là d ( d thuộc N* )
=> n+1 và 3n+4 đều chia hết cho d
=> (3n+4)-3(n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> (n+1,3n+4)=1 nên n+1 và 3n+4 là 2 SNT cùng nhau
=> P/s n+1/3n+4 tối giản với mọi n thuộc N (đpcm)
b) Gọi (2n+3,3n+5) là d (d thuộc N*)
=> 2n+3 chia hết cho d và 3n+5 chia hết cho d
=> (3n+5)-(2n+3) chia hết cho d
=> 2(3n+5)-3(2n+3) chia hết cho d
=> 6n+10-6n+9 chia hết cho d
=> d=1
=> (2n+3,3n+5)=1 nên 2n+3 và 3n+5 là 2 SNT cùng nhau
=> P/s 2n+3/3n+5 tối giản với mọi n thuộc N (đpcm)
\(\frac{n+1}{2n+3}\)
Gọi ƯCLN(n + 1, 2n + 3) là a
Ta có:
n + 1\(⋮\)a
\(\Rightarrow\)2(n + 1)\(⋮\)a
\(\Leftrightarrow\)2n + 2\(⋮\)a
2n + 3\(⋮\)a
\(\Rightarrow\)(2n + 3) - (2n + 2)\(⋮\)a
\(\Rightarrow\)1\(⋮\)a
\(\Rightarrow\)a = 1
\(\frac{2n+1}{3n+2}\)
Gọi ƯCLN(2n + 1, 3n + 2) là b
Ta có:
2n + 1\(⋮\)b
\(\Rightarrow\)3.(2n + 1)\(⋮\)b
\(\Leftrightarrow\)6n + 3\(⋮\)b (1)
3n + 2\(⋮\)b
\(\Rightarrow\)2.(3n + 2)\(⋮\)b
\(\Leftrightarrow\)6n + 4\(⋮\)b (2)
Từ (1), (2) ta có:
(6n + 4) - (6n + 3)\(⋮\)b
\(\Leftrightarrow\)1\(⋮\)b
\(\Rightarrow\)b = 1
Vậy ƯCLN(2n + 1, 3n + 2) là 1
\(\Rightarrow\)Phân số tối giản
Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )
n +1 = 2n + 2 (1) ; 2n+3*) (2)
Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1
vậy ta có đpcm
gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )
3n +2 = 15 n + 10 (1) ; 5n + 3 =15n + 9 (2)
lấy (!) - (2) ta được 15n + 10 - 15n - 9 = 1:d => d = 1
Vậy ta có đpcm
a) Gọi d là Ư C L N ( n+1; 2n+3)
ta có: n +1 chia hết cho d => 2.(n+1) chia hết cho d => 2n + 2 chia hết cho d
2n + 3 chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản
b) Gọi d là Ư C L N ( 2n+1; 3n+2)
ta có: 2n+1 chia hết cho d => 3.(2n+1) chia hết cho d => 6n + 3 chia hết cho d
3n +2 chia hết cho d => 2.(3n+2) chia hết cho d => 6n + 4 chia hết cho d
=> 6n + 4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
\(\Rightarrow\frac{2n+1}{3n+2}\) là phân số tối giản
c) Gọi d là Ư C L N ( n; n+1)
ta có: n chia hết cho d
n + 1 chia hết cho d
=> n +1 - n chia hết cho d
=> 1 chia hết cho d
\(\Rightarrow\frac{n}{n+1}\) là phân số tối giản
gọi d là ƯCLN của \(\frac{n+1}{2n+3}\)ta có:
\(\text{(2n+3)-(n-1) ⋮d}\)
\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)
\(\Rightarrow2n+3-2n-2⋮d\)
\(\Rightarrow2n-2n+3-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
vậy \(\frac{n+1}{2n+3}\)là p/s tối giản với mọt số tự nhiên n