K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

Ta có: \(c=\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+....+\frac{1}{37\cdot40}\)

\(\Leftrightarrow3c=3\left(\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+...+\frac{1}{37\cdot40}\right)\)

\(\Leftrightarrow3c=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{37\cdot40}\)

Mà \(\frac{3}{4\cdot7}=\frac{1}{4}-\frac{1}{7}\)

\(\frac{3}{7\cdot10}=\frac{1}{7}-\frac{1}{10}\)

...

\(\Leftrightarrow3c=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{37\cdot40}\)

\(=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{37}-\frac{1}{40}\)

Ta thấy ngoại trừ hai phân số đầu tiên và cuối cùng thì tất cả các phân số còn lại đều có 1 phân số có cùng giá trị tuyệt đối nhưng ngược dấu đứng cạnh, mà tổng hai số ngược dấu bằng 0 nên ta nhóm các phân số ngược dấu thì được:

\(3c=\frac{1}{4}-\frac{1}{40}\Leftrightarrow c=\left(\frac{1}{4}-\frac{1}{40}\right)\cdot\frac{1}{3}\)

\(=\frac{9}{40}\cdot\frac{1}{3}=\frac{3}{40}=\frac{9}{120}< \frac{40}{120}\)

Mà \(\frac{40}{120}=\frac{1}{3}\Rightarrow c< \frac{1}{3}\)

25 tháng 4 2018

\(\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{37.40}< \dfrac{1}{5}\)

=\(\dfrac{3}{3}\left(\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{37.40}\right)\)

=\(\dfrac{1}{3}\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{37.40}\right)\)

=\(\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{37}-\dfrac{1}{40}\right)\)

=\(\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{40}\right)\)

=\(\dfrac{3}{40}< \dfrac{1}{3}\)

2 tháng 3 2017

1) 

A= \(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{39.40}\)

\(\Rightarrow A=\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...+\frac{1}{39}-\frac{1}{40}\)

\(\Rightarrow A=\frac{1}{3}-\frac{1}{40}\)

=> A= 27/120

2 tháng 3 2017

A = \(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{39.40}\)

\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{39}-\frac{1}{40}\)

\(\frac{1}{3}-\frac{1}{40}\)

\(\frac{37}{120}\)

B = \(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{37.40}\)

\(\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{37}-\frac{1}{40}\right)\)

\(\frac{1}{3}\left(\frac{1}{4}-\frac{1}{40}\right)\)

\(\frac{1}{3}.\frac{9}{40}=\frac{3}{40}\)

C = \(\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{37.40}\)

\(\frac{2}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{37}-\frac{1}{40}\right)\)

\(\frac{2}{3}.\left(\frac{1}{4}-\frac{1}{40}\right)\)

\(\frac{2}{3}.\frac{9}{40}=\frac{3}{20}\)

30 tháng 4 2019

Đặt \(A=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{2014\cdot2017}\)

\(\Rightarrow A=\frac{1}{3}\cdot\left(\frac{3}{1\cdot3}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{2014\cdot2017}\right)\)

\(\Rightarrow A=\frac{1}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2014}-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{3}\cdot\left(1-\frac{1}{2017}\right)=\frac{1}{3}-\frac{1}{6051}< \frac{1}{3}\)

\(\Rightarrow A< \frac{1}{3}\left(ĐPCM\right)\)

30 tháng 4 2019

Ta có :

\(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{2014.2017}\)

\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{2014.2017}\right)\)

\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2014}-\frac{1}{2017}\right)\)

\(=\frac{1}{3}\left(1-\frac{1}{2017}\right)\)

\(=\frac{1}{3}.\frac{2016}{2017}< \frac{1}{3}\left(đpcm\right)\)

a)\(\dfrac{1}{2^2}<\dfrac{1}{1.2}\)

\(\dfrac{1}{3^3}<\dfrac{1}{2.3}\)

\(...\)

\(\dfrac{1}{8^2}<\dfrac{1}{7.8}\)

Vậy ta có biểu thức:

\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)

\(B= 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(B<1-\dfrac{1}{8}=\dfrac{7}{8}<1\)

Vậy B < 1 (đpcm)

 

 

 

Giải:

a) Ta có:

1/22=1/2.2 < 1/1.2

1/32=1/3.3 < 1/2.3

1/42=1/4.4 < 1/3.4

1/52=1/5.5 < 1/4.5

1/62=1/6.6 < 1/5.6

1/72=1/7.7 < 1/6.7

1/82=1/8.8 <1/7.8

⇒B<1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8

   B<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8

   B<1/1-1/8

   B<7/8

mà 7/8<1

⇒B<7/8<1

⇒B<1

b)S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46

   S=1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46

   S=1/1-1/46

   S=45/46

Vì 45/46<1 nên S<1

Vậy S<1

Chúc bạn học tốt!

\(A=\dfrac{1}{3}\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{25\cdot28}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)

\(=\dfrac{1}{3}\cdot\dfrac{6}{28}=\dfrac{2}{28}=\dfrac{1}{14}\)

`3A = 3/(4.7) + 3/(7.10) + .. + 3/(25.28)`

`3A = 1/4 - 1/7 + 1/7 - 1/10 +... + 1/25 - 1/28`

`3A = 3/14`

`A = 1/14.`

24 tháng 4 2017

1/1*4+1/4*7+1/7*10+...+1/2010*2013=A

3A=3/1*4+3/4/*7+3/7*10+...+3/2010*2013

3A=1-1/4+1/4-1/7+1/7-1/10+...+1/2010-1/2013

3A=1-1/2013<1

Suy ra : A <1/3

Nho k cho minh voi nhe

25 tháng 4 2017

Thank bạn nhìu nha ^-^ Chúc bạn học tốt

26 tháng 3 2016

Nguyễn Huy Thắng giải sai rồi ,thế này mới đúng nè

1,\(\frac{1}{6}+\frac{1}{12}+.........+\frac{1}{72}\)

=\(\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{8.9}\)

=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{8}-\frac{1}{9}\)

=\(\frac{1}{2}-\frac{1}{9}\)

=\(\frac{7}{18}\)

2,\(\frac{3}{1.4}+\frac{3}{4.7}+..........+\frac{3}{13.16}\)

=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.........+\frac{1}{13}-\frac{1}{16}\)

=\(1-\frac{1}{16}\)

=\(\frac{15}{16}\)

26 tháng 3 2016

2)đặt B= 3/1.4+3/4.7+3/7.10+3/10.13+3/13.16

\(B=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{16}\right)\)

\(B=3-\frac{15}{16}\)

\(B=\frac{45}{16}\)