Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(c=\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+....+\frac{1}{37\cdot40}\)
\(\Leftrightarrow3c=3\left(\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+...+\frac{1}{37\cdot40}\right)\)
\(\Leftrightarrow3c=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{37\cdot40}\)
Mà \(\frac{3}{4\cdot7}=\frac{1}{4}-\frac{1}{7}\)
\(\frac{3}{7\cdot10}=\frac{1}{7}-\frac{1}{10}\)
...
\(\Leftrightarrow3c=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{37\cdot40}\)
\(=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{37}-\frac{1}{40}\)
Ta thấy ngoại trừ hai phân số đầu tiên và cuối cùng thì tất cả các phân số còn lại đều có 1 phân số có cùng giá trị tuyệt đối nhưng ngược dấu đứng cạnh, mà tổng hai số ngược dấu bằng 0 nên ta nhóm các phân số ngược dấu thì được:
\(3c=\frac{1}{4}-\frac{1}{40}\Leftrightarrow c=\left(\frac{1}{4}-\frac{1}{40}\right)\cdot\frac{1}{3}\)
\(=\frac{9}{40}\cdot\frac{1}{3}=\frac{3}{40}=\frac{9}{120}< \frac{40}{120}\)
Mà \(\frac{40}{120}=\frac{1}{3}\Rightarrow c< \frac{1}{3}\)
\(\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{37.40}< \dfrac{1}{5}\)
=\(\dfrac{3}{3}\left(\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{37.40}\right)\)
=\(\dfrac{1}{3}\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+...+\dfrac{3}{37.40}\right)\)
=\(\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{37}-\dfrac{1}{40}\right)\)
=\(\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{40}\right)\)
=\(\dfrac{3}{40}< \dfrac{1}{3}\)
1)
A= \(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{39.40}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...+\frac{1}{39}-\frac{1}{40}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{40}\)
=> A= 27/120
A = \(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{39.40}\)
= \(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{39}-\frac{1}{40}\)
= \(\frac{1}{3}-\frac{1}{40}\)
= \(\frac{37}{120}\)
B = \(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{37.40}\)
= \(\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{37}-\frac{1}{40}\right)\)
= \(\frac{1}{3}\left(\frac{1}{4}-\frac{1}{40}\right)\)
= \(\frac{1}{3}.\frac{9}{40}=\frac{3}{40}\)
C = \(\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{37.40}\)
= \(\frac{2}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{37}-\frac{1}{40}\right)\)
= \(\frac{2}{3}.\left(\frac{1}{4}-\frac{1}{40}\right)\)
= \(\frac{2}{3}.\frac{9}{40}=\frac{3}{20}\)
Đặt \(A=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{2014\cdot2017}\)
\(\Rightarrow A=\frac{1}{3}\cdot\left(\frac{3}{1\cdot3}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{2014\cdot2017}\right)\)
\(\Rightarrow A=\frac{1}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2014}-\frac{1}{2017}\right)\)
\(\Rightarrow A=\frac{1}{3}\cdot\left(1-\frac{1}{2017}\right)=\frac{1}{3}-\frac{1}{6051}< \frac{1}{3}\)
\(\Rightarrow A< \frac{1}{3}\left(ĐPCM\right)\)
Ta có :
\(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{2014.2017}\)
\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{2014.2017}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2014}-\frac{1}{2017}\right)\)
\(=\frac{1}{3}\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{3}.\frac{2016}{2017}< \frac{1}{3}\left(đpcm\right)\)
a)\(\dfrac{1}{2^2}<\dfrac{1}{1.2}\)
\(\dfrac{1}{3^3}<\dfrac{1}{2.3}\)
\(...\)
\(\dfrac{1}{8^2}<\dfrac{1}{7.8}\)
Vậy ta có biểu thức:
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)
\(B= 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(B<1-\dfrac{1}{8}=\dfrac{7}{8}<1\)
Vậy B < 1 (đpcm)
Giải:
a) Ta có:
1/22=1/2.2 < 1/1.2
1/32=1/3.3 < 1/2.3
1/42=1/4.4 < 1/3.4
1/52=1/5.5 < 1/4.5
1/62=1/6.6 < 1/5.6
1/72=1/7.7 < 1/6.7
1/82=1/8.8 <1/7.8
⇒B<1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8
B<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
B<1/1-1/8
B<7/8
mà 7/8<1
⇒B<7/8<1
⇒B<1
b)S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46
S=1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46
S=1/1-1/46
S=45/46
Vì 45/46<1 nên S<1
Vậy S<1
Chúc bạn học tốt!
\(A=\dfrac{1}{3}\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{25\cdot28}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{6}{28}=\dfrac{2}{28}=\dfrac{1}{14}\)
`3A = 3/(4.7) + 3/(7.10) + .. + 3/(25.28)`
`3A = 1/4 - 1/7 + 1/7 - 1/10 +... + 1/25 - 1/28`
`3A = 3/14`
`A = 1/14.`
1/1*4+1/4*7+1/7*10+...+1/2010*2013=A
3A=3/1*4+3/4/*7+3/7*10+...+3/2010*2013
3A=1-1/4+1/4-1/7+1/7-1/10+...+1/2010-1/2013
3A=1-1/2013<1
Suy ra : A <1/3
Nho k cho minh voi nhe
Nguyễn Huy Thắng giải sai rồi ,thế này mới đúng nè
1,\(\frac{1}{6}+\frac{1}{12}+.........+\frac{1}{72}\)
=\(\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{8.9}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{8}-\frac{1}{9}\)
=\(\frac{1}{2}-\frac{1}{9}\)
=\(\frac{7}{18}\)
2,\(\frac{3}{1.4}+\frac{3}{4.7}+..........+\frac{3}{13.16}\)
=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.........+\frac{1}{13}-\frac{1}{16}\)
=\(1-\frac{1}{16}\)
=\(\frac{15}{16}\)
2)đặt B= 3/1.4+3/4.7+3/7.10+3/10.13+3/13.16
\(B=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{16}\right)\)
\(B=3-\frac{15}{16}\)
\(B=\frac{45}{16}\)
ai tk mk thì mk tk lại