Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = 1+ 3 + 32 + 33 + ... + 311 ( có 12 sô, 12 chia hết cho 3)
A = (1 + 3 + 32) + (33 + 34 + 35) + ... + (39 + 310 + 311)
A = 13 + 33.(1 + 3 + 32) + ... + 39.(1 + 3 + 32)
A = 13 + 33.13 + ... + 39.13
A = 13.(1 + 33 + ... + 39) chia hết cho 13
b) Lm tươg tự
Nhóm 4 số vào để ra số 40
a/ ta có :
C = 1 + 3 + 32 + 33 + ... + 311
C = 30 + 31 + 32 + 33 + ... + 311
C = (30 + 31 + 32) + (33 + 34 + 35 ) + ( 36 + 37 + 38 ) + (39 + 310 + 311)
C = 30 .(1 + 3+ 32 ) + 33.( 1 + 3+ 32) + 36 . ( 1 + 3 +32) + 39 (1 + 3+ 32)
C = 30 . 13 + 33. 13 + 36 . 13 + 39 . 13
C = ( 30 +33 + 36 + 39 ) . 13
vì 13 chia hết cho 13 nên (30 + 33 + 36 + 39 ) . 13 chia hết cho 13
hay C chia hết cho 13 ( đpcm)
b/ bn làm như phần a, nhg bn góp 4 số lại vs nhau :
( 30 + 31 + 32 + 33) + ( 34 + 35 + 36 + 37 ) + ( 38 + 39 + 310 + 311 )
rồi bn làm tương tự như phần a nhé
ủng hộ mk nha !!!!! ^_^
\(=\left(3^0+3^1+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=40.1+3^4.40+3^8.40=40.\left(1+3^4+3^8\right)\)
Luôn luôn chia hết cho 40
=(3^0+3^1+3^2+3^3)+.....(3^8+3^9+3^10+3^11)
=>40.1+3^4.40+3^8.40=40.(1+3^4+3^8)
=> tổng trên chia hết 40
=1+3+3^2+3^3+........+3^11
=(1+3+3^2+3^3)+ ..........+ (3^8+3^9+3^10+3^11)
=40+......+3^8(1+3+3^2+3^3)
=40+......+3^8.40
=40(1+.....+3^8)
Mà 40 chia hết cho 40
Nên (1+.......+3^8) chia hết cho 40
--> 3^0+3^1+3^2+3^3+.....+3^8 chia hết cho 40
Ta thấy:
A=1+3+3^2+3^3+....+3^11
A=3^0+3^1+3^2+3^3+....+3^11
Mặt khác ta thấy:
Tất cả số hạng trong tổng A đều có cơ số là 3
=>tất cả các số hạng trong tổng A đều chia hết cho 3
<=> A chia hết cho 3 (ĐPCM)