K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
23 tháng 11 2020

gọi a là ước chung lớn nhất của 2n+1 và 3n+2

do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1

hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.

b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5

do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1

hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau

13 tháng 12

Địt

29 tháng 12 2015

a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau

b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau

tick nha

4 tháng 11 2023

Ko hiểu ????

4 tháng 11 2023

a)nếu 2n+1 và 3n+2 là các số  nguyên tố cùng nhau thì chúng phải có ƯCLN =1 

giả sử ƯCLN(2n+1,3n+2)=d

=>2n+1 chia hết cho d ,  3n+2 chia hết cho d 

=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d

=>6n+3 chia hết cho d, 6n +4 chia hết cho d

=>(6n+4)  - (6n+3) chia hết cho d

=>6n+4-6n-3=1 chia hết cho d

=>d=1

vậy ƯCLN(2n+1,3n+2)=1 (đpcm)

đpcm là điều phải chứng minh

17 tháng 4 2017

a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau

b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm

c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1d => d = 1 => dpcm

25 tháng 12 2021

Thank you

 

2 tháng 6 2017

31 tháng 10

Đặt (3n+1,2n+1)=₫

=>(2(3n+1(,3(2n+1)=₫

=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫

=>6n+3-6n+2...₫=>1...₫=>₫=1

=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau

 

9 tháng 12 2016

 a/GỌI ƯCLN CỦA A VÀ B LÀ D

ƯCLN (4n+3;5n+1)=D

suy ra {4n+3 chia hết cho D

           {5n+1 chia hết cho D

suy ra{5(4n+3) chia hết cho D

          {4(5n+1) chi hết cho D

suy ra 5(4n+3)-4(5n+1) chia hết cho D 

suy ra (20n+3)-(20n+1) chia hết cho D

suy ra          3   -    1      chia hết cho D

suy ra              2             chia hết cho D

SUY RA D thuộc Ư(2)

suy ra D =2 (tm đề bài)

VẬY ƯCLN  của (a;b) = 2

29 tháng 1 2018

Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:

4n+3 chia hết cho d => 20n+15 chia hết cho d

5n+1 chia hết cho d => 20n+4 chia hết cho d

=> 20n+15-(20n+4) chia hết cho d

=> 11 chia hết cho d

=> d thuộc Ư(11)

=> d thuộc {1; -1; 11; -11}

Mà 4n+3 và 5n+1 không nguyên tố cùng nhau

=> d = 11

=> ƯCLN(4n+3; 5n+1) = d

Chúc bạn học tốt

8 tháng 11 2015

1)Gọi 2 số tự nhiên liên tiếp là n và n+1

Đặt ƯCLN(n,n+1)=d

Ta có: n chia hết cho d

n+1 chia hết cho d

=>n+1-n chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯCLN(n,n+1) =1

=>n và n+1 là 2 số nguyên tố cùng nhau

2)Gọi ƯCLN(2n+5,3n+7)=d

Ta có: 2n+5 chia hết cho d=>3.(2n+5) chia hết cho d=>6n+15 chia hết cho d

3n+7 chia hết cho d=>2.(3n+7) chia hết cho d=>6n+14 chia hết cho d

=>6n+15-(6n+14) chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯCLN(2n+5,3n+7)=1

=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

8 tháng 11 2015

a) 

Gọi 2 số tự nhiên liên tiếp là n; n+1 

Gọi ƯCLN ( n;n+1) la d 

=> n chia hết cho d; n+1 chia hết cho d      

=> n+1-n chia hết cho d  

=> 1 chia hết cho d 

=> d =1

=>  ƯCLN ( n;n+1) =1

=>  hai số tự nhiên liên tiếp luôn là hai số nguyên tố cùng nhau

b) 

Gọi ƯCLN( 2n+5;3n+7) la  d 

=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d 

=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d 

=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d 

=> 6n+15-(6n+14) chia hết cho d 

=> 1 chia hết cho d 

=> d= 1

=>  ƯCLN( 2n+5;3n+7)=1

=>2n+5 và 3n+7 là hai số nguyên tố cùng nhau

a) Gọi UCLN \(3n+7\)và \(5n+12\)là \(d\)

\(\Rightarrow\left(3n+7\right)⋮d\)và \(\left(5n+12\right)⋮d\)

Xét 2 biểu thức :

\(\Rightarrow\left(3n+7\right).5⋮d\Rightarrow15n+35⋮d\)

\(\Rightarrow\left(5n+12\right).3⋮d\Rightarrow15n+36⋮d\)

\(\Rightarrow\left(15n+37-15n-36\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow3n+7;5n+12\)nguyên tố cùng nhau.