Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n=1\Rightarrow1^1\ge1!\) đúng
Giả sử đúng với \(n=k\) hay \(k^k\ge k!\)
Cần chứng minh đúng với \(n=k+1\) hay \(\left(k+1\right)^{k+1}\ge\left(k+1\right)!\)
Ta có:
\(\left(k+1\right)^{k+1}=\left(k+1\right).\left(k+1\right)^k>\left(k+1\right).k^k\ge\left(k+1\right).k!=\left(k+1\right)!\) (đpcm)
thầy cho em hỏi đáp án cuat thầy là của bài
Sử dụng phương pháp quy nạp toán học, chứng minh:
Với n nguyên dương, chứng minh n! ≤nn
đúng không ạ em cảm ơn thầy
Dễ thấy dấu"=" xảy ra khi x=1
Giả sử bđt đúng với n=k>1 tức là
\(3^k\ge2k+1\) (1)
Nhân cả 2 vế của (1) với 3 ta được
\(3^{k+1}\ge6k+3\Leftrightarrow3^{k+1}\ge3k+4+3k-1\)
Vì 3k-1>0
=>\(3^{k+1}\ge3\left(k+1\right)+1\)
Vậy bđt đúng với n=k+1
=> bđt được chứng minh
a)
Với \(n=1\).
\(n^5-n=1^5-1=0\).
Do 0 chia hết cho 5 nên điều cần chứng minh đúng với n = 1.
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(k^5-k⋮5\).
Ta cần chứng minh nó đúng với \(n=k+1\).
Nghĩa là: \(\left(k+1\right)^5-\left(k+1\right)⋮5\).
Thật vậy:
\(\left(k+1\right)^5-\left(k+1\right)=C^0_5k^0+C^1_5k+...+C^5_5k^5-k-1\)
\(=1+C^1_5k+...+k^5-k-1\)
\(=C^1_5k+...+C^4_5k^4+k^5-k\)
Do mỗi \(C_5^1;C^2_5;C^3_5;C^4_5\) đều chia hết cho 5 và do gải thiết quy nạp \(k^5-k⋮5\) nên \(C^1_5k+...+C^4_5k^4+k^5-k\) chia hết cho 5.
Vì vậy: \(\left(k+1\right)^5-\left(k+1\right)⋮5\).
Vậy điều phải chứng minh đúng với mọi n.
b)
Tổng bình phương 3 số tự nhiên liên tiếp là: \(n^3+\left(n+1\right)^3+\left(n+2\right)^3\).
Ta cần chứng minh \(n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9,\forall n\in N^{\circledast}\).
Với n = 1.
\(n^3+\left(n+1\right)^3+\left(n+2\right)^3=1^3+2^3+3^3=36\).
Vậy điều cần chứng minh đúng với \(n=1\).
Giả sử điều cần chứng minh đúng với n = k.
Nghĩa là: \(k^3+\left(k+1\right)^3+\left(k+2\right)^3⋮9\).
Ta cần chứng minh nó đúng với \(n=k+1\).
Nghĩa là: \(\left(k+1\right)^3+\left(k+2\right)^3+\left(k+3\right)^3⋮9\)
Thật vậy:
\(\left(k+1\right)^3+\left(k+2\right)^3+\left(k+3\right)^3\)\(=\left(k+1\right)^3+\left(k+2\right)^3+k^3+3.3k^2+3.k.3^2+3^3\)
\(=\left(k+1\right)^3+\left(k+2\right)^3+k^3+9k^2+27k+81\)
Theo giả thiết quy nạp \(k^3+\left(k+1\right)^3+\left(k+2\right)^3⋮9\) và \(9k^2+27k+81=9\left(k^2+3k+9\right)⋮9\).
Nên \(\left(k+1\right)^3+\left(k+2\right)^3+k^3+9k^2+27k+81⋮9\).
Vậy điều phải chứng minh đúng với mọi n.
Phân tích nhân tử nhầm=>giải lại
\(A=2n^2-3n^2+n=n\left(2n^2-3n+1\right)=n\left(n-1\right)\left(2n+1\right)\)\(A=n\left(n-1\right)\left(2n+2-3\right)=\left[2n\left(n-1\right)\left(n+1\right)\right]-3\left(n\right)\left(n-1\right)=2B-3C\)
\(\left\{{}\begin{matrix}B⋮3\\C⋮2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2B⋮6\\3C⋮3\end{matrix}\right.\) \(\Rightarrow A⋮6\) => dpcm
Lời giải:
\(A=n\left(2n^3-3n+1\right)=n\left(n-1\right)\left(2n^2+2n-1\right)\)
\(A=n\left(n-1\right)\left[2n\left(n+1\right)-1\right]=2n\left(n-1\right)\left(n+1\right)+n\left(n-1\right)=B-C\)\(\left\{{}\begin{matrix}B⋮2\\B⋮3\end{matrix}\right.\)\(\Rightarrow B⋮6\forall n\in N\)
\(C=n\left(n-1\right)\) không thể chia hết cho 6 với mọi n thuộc N
\(\Rightarrow A\) chỉ chia hết cho 6 với điều kiện \(n\ne3k+2\)
ví dụ đơn giải với k=0 => n= 2
\(A=2.2^3-3.2^2+2=14⋮̸6\)
Kết luận đề sai
\(a,n=1\Leftrightarrow\dfrac{1}{1.2}=\dfrac{1}{2}\left(đúng\right)\\ G\text{/}s:n=k\Leftrightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{k\left(k+1\right)}=\dfrac{k}{k+1}\\ \text{Với }n=k+1\\ \text{Cần cm: }\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{k\left(k+1\right)}+\dfrac{1}{\left(k+1\right)\left(k+2\right)}=\dfrac{k+1}{k+2}\\ \text{Ta có }VT=\dfrac{k}{k+1}+\dfrac{1}{\left(k+1\right)\left(k+2\right)}=\dfrac{k^2+2k+1}{\left(k+1\right)\left(k+2\right)}\\ =\dfrac{\left(k+1\right)^2}{\left(k+1\right)\left(k+2\right)}=\dfrac{k+1}{k+2}=VP\)
Vậy với \(n=k+1\) thì mệnh đề cũng đúng
Vậy theo pp quy nạp ta đc đpcm
Do 2 + 1 chia hết cho 3 nên theo bổ đề LTE ta có \(v_3\left(2^{3^n}+1\right)=v_3\left(2+1\right)+v_3\left(3^n\right)=n+1\).
Do đó \(2^{3^n}+1⋮3^{n+1}\) nhưng không chia hết cho \(3^{n+2}\).
\(=n\left(2n^2-2n-n+1\right)\)
\(=n\left(n-1\right)\left(2n-1\right)\)
TH1: n=3k
\(A=3k\left(3k-1\right)\left(6k-1\right)⋮3\)
mà A luôn chia hết cho 2(do n;n-1 là hai số liên tiếp)
nên A chia hết cho 6
TH2: n=3k+1
\(A=\left(3k+1\right)\left(3k+1-1\right)\left(6k+2-1\right)\)
\(=\left(3k+1\right)\left(3k\right)\cdot\left(6k+1\right)⋮3\)
=>A chia hết cho 6
TH3: n=3k+2
\(A=\left(3k+2\right)\left(3k+1\right)\left(6k+4-1\right)\)
\(=\left(3k+2\right)\left(3k+1\right)\left(6k+3\right)⋮6\)