Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.91.11⋮11\)
\(\Rightarrow\overline{abcabc}⋮11\left(đpcm\right)\)
Vậy...
Ta xét dãy số 1; 11; 111; ...; 111...11
30 c.số
Khi mỗi số hạng chia cho 29 thì sẽ có 2 số đồng dư
Giả dụ 2 số đó là 111...1 và 111...1 (n > m)
n c.số m c.số
=> 111...1 - 111...1 = 111...100...0 = 111...11 . 10m
n c.số m c.số
Nhưng ƯCLN (10m,29) = 1 => 111...11 chia hết cho 29
Vậy luôn tìm được 1 số có dạng 111...11 chia hết cho 29
A.Ta có: abcabc = 1000abc + abc = 1001.abc
Vì 1001 = 7.11.13 (là tích của 3 số nguyên tố)
=> abcabc luôn chia hết cho 3 số nguyên tố là 7; 11 và 13
B.Ta có: abcdeg = 1000abc + deg = 2001deg chia hết cho 23 và 29
C.Gọi số có 27chữ số 1 là A
A = 111...1 số có 9chữ số 1) x 100...0100...01 (mỗi chỗ 00...0 có 8chữ số 0)
Vì số 111...1 (số có 9cs 1) chia hết cho 9 (tổng các chữ số = 9)
số 100...0100...01 (mỗi chỗ 00...0 có 8chữ số 0) chia hết cho 3 (tổng các chữ số = 3)
=> A chia hết cho 9x3=27
Vậy.
3 k nhé..
abcabc = 1001xabc = 11x91xabc = 13x77xabc nên abcabc bao giờ cũng chia hết cho 11 và 13
Xét các số :2016;20162016;..........;2016;...;2016(2018 số 2016)
Có 2018 số nên chia cho 2017 có ít nhất 2 số đồng dư
Giả sử số đó là 2016..........2016 (m số 2016) và 2016.......2016(n số 2016) (m;n E N m>n)
Suy ra 2016.........2016-2016.......2016 chia hết cho 2017
m số 2016 n số 2016
Suy ra 2016...........2016x1000
m-n số 2016
Mà (1000 n ;2017)=1
Suy ra 2016.......2016 chia hết cho 2017(m-n số 2016) (đpcm)
\(\overline{abcabc}=\overline{abc}\cdot1000+\overline{abc}\)
\(=\overline{abc}\cdot1001\)
\(1001⋮11\)
\(\Rightarrow\overline{abc}\cdot1001⋮11\) (đpcm)
abcabc = abc . 1000 + abc = abc . (1000 + 1)
=> abc . 1001 = abc . 99 . 11
Vì 11 chia hết cho 11 nên abc . 99 . 11 chia hết cho 11
=> abcabc lúc nào cx chia hết cho 11 (đpcm)
abcabc = abc.1001= abc.77.13 chia hết cho 13
=> số có dạng abcabc luôn chia hết cho 13
Ta có:abcabc=abc*77*13
=>abcabc chia hết cho 13
Vậy số có dạng abcabc luôn chia hết cho 13
1) cm: abab chia hết cho 101
Ta có : ab . 101 = ab . ( 100 + 1) = ab00 + ab = abab
=> abab chia hết cho 101 ( not 11)
2) ta có: aaabbb = aaa.1000+ bbb
= a.111.1000 + b.111
= a.37.3.1000+ b.37.3
= 37(3000a+ 3b) chia hết cho 37
3)
Ta có: abcabc
= abc. 1000 + abc
= abc. 1001
= abc. 143. 7
= abc . 11 . 13. 7 chia hết cho 7; 11; 13
4) Ta có: ababab = abab.100+ ab
= (ab.100 + ab) .100+ab
= ab.10000+ ab.100 + ab
= ab . 10101
=> ababab chia hết cho 10101
5)
abab - baba = a .1000 + b.100 + a.10 + b - (b .1000 + a.100 + b.10 + a)
= a .1000 + b.100 + a.10 + b - b .1000 - a.100 - b.10 - a
= a . 909 + b . (-909)
= a . 909 - b . 909
= a . 9 . 101 - b . 9 . 101
= 9 . (a . 101 - b . 101) ⋮ 9
đơn giản mà n chia hết cho n thì n chiA HẾT CHO N NGHE CHƯA HIEU CHUA
\(\overline{abcabc}\)
\(=10^5\cdot a+10^4\cdot b+10^3\cdot c+10^2\cdot a+10^1\cdot b+10^0\cdot c\)
\(=100100\cdot a+10010b+1001c\)
\(=91\left(1100a+110b+11c\right)⋮91\)