Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{abcabc}\)
\(=10^5\cdot a+10^4\cdot b+10^3\cdot c+10^2\cdot a+10^1\cdot b+10^0\cdot c\)
\(=100100\cdot a+10010b+1001c\)
\(=91\left(1100a+110b+11c\right)⋮91\)
A.Ta có: abcabc = 1000abc + abc = 1001.abc
Vì 1001 = 7.11.13 (là tích của 3 số nguyên tố)
=> abcabc luôn chia hết cho 3 số nguyên tố là 7; 11 và 13
B.Ta có: abcdeg = 1000abc + deg = 2001deg chia hết cho 23 và 29
C.Gọi số có 27chữ số 1 là A
A = 111...1 số có 9chữ số 1) x 100...0100...01 (mỗi chỗ 00...0 có 8chữ số 0)
Vì số 111...1 (số có 9cs 1) chia hết cho 9 (tổng các chữ số = 9)
số 100...0100...01 (mỗi chỗ 00...0 có 8chữ số 0) chia hết cho 3 (tổng các chữ số = 3)
=> A chia hết cho 9x3=27
Vậy.
3 k nhé..
116 - 115 + 114
= 114 . 112 - 114 . 11 + 114 . 1
= 114 . 121 - 114 . 11 + 114 . 1
= 114 . ( 121 - 11 + 1 )
= 114 . 111
Ta thấy : 111 \(⋮\)111
\(\Rightarrow\)114 . 111 \(⋮\)111 hay 116 - 115 + 114 \(⋮\)111
Xét các số: 2016;20162016;...;2016...2016 (2018 số 2016)
Có 2018 số nên chia cho 2017 có ít nhất 2 số đồng dư
Giả sử số đó là 2016...2016 (m số 2016) và 2016...2016 (n số 2016) (m,n E N;m>n)
=>2016...2016-2016...2016 chia hết cho 2017
▲ ▲
m số 2016 n số 2016
=>2016...2016.1000n
▲
m-n số 2016
Mà (1000n;2017)=1
=>2016...2016 chia hết cho 2017 (m-n số 2016) (đpcm)
Xétcác số 2016;20162016;...;2016 ...2016(2018số 2016)
có 2018 số nên chia cho 2017 có ít nhất 2 số đồng dư
giả sử số đó là 2016...2016 chia hết cho 2017 (n số 2016) (m,nEn;m>n)
=> 2016...2016-2016...2016 chia hết cho 2017
m số 2016 nsố 2016
=> 2016...2016.1000n
m-n số 2016
Mà (1000n;2017)=1
=>2016...2016 chia hết cho 2017 ( m - n số 2016) (dpcm)
Bạn tham khảo ở đây nhé
Bài toán 120 - Học toán với OnlineMath
Ta có trong 5 số bất kỳ luôn tồn tại 3 số có tổng chia hết cho 3 .
Như vậy trong 9 số thì tồn tại 5 cặp , mỗi cặp 3 số có tổng chia hết cho 3
Mỗi cặp đồng dư 0,3,6 mod 5
Nếu 3 cặp cùng 1 lớp đồng dư ⇒ dpcm
Mà có 5 cặp ⇒ Có đầy đủ 3 lớp đồng dư ⇒ Tồn tại 5 số có tổng chia hết cho 5
Ta xét dãy số 1; 11; 111; ...; 111...11
30 c.số
Khi mỗi số hạng chia cho 29 thì sẽ có 2 số đồng dư
Giả dụ 2 số đó là 111...1 và 111...1 (n > m)
n c.số m c.số
=> 111...1 - 111...1 = 111...100...0 = 111...11 . 10m
n c.số m c.số
Nhưng ƯCLN (10m,29) = 1 => 111...11 chia hết cho 29
Vậy luôn tìm được 1 số có dạng 111...11 chia hết cho 29