Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a,b là các số chẵn nên a,b viết được dưới dạng là a=2m và b=2n(Với m,n∈Z)
Ta có: \(a^2+b^2\)
\(=\left(2m\right)^2+\left(2n\right)^2\)
\(=4m^2+4n^2\)
\(=4\left(m^2+n^2\right)\)
\(=2\left(2m^2+2n^2\right)\)
\(=\left(m^2+n^2+1-m^2-n^2+1\right)\cdot\left(m^2+n^2+1+m^2+n^2-1\right)\)
\(=\left(m^2+n^2+1\right)^2-\left(m^2+n^2-1\right)^2\)
là bình phương của hai số nguyên(đpcm)
Đặt a+71=n2 (n thuộc N) <=> 4a+284=4n2 (1)
4a-31=m2 (m thuộc N) (2)
Trừ cả 2 vế của (1) cho 2 vế của (2) ta được:
4n2-m2=315
<=> (2n-m)(2n+m)=32.5.7
Vì m, n thuộc N nên ta có:
TH1: 2n-m=9 và 2n+m=35 <=>n=11;m=13
TH2:2n-m=3 và 2n+m=105 <=>n=27; m=51
TH3:2n-m=5 và 2n+m=67 <=>n=17 và m=29
TH4: 2n-m=7 và 2n+m=45 <=> n=13 và m=19
TH5:2n-m=15 và 2n+m=21 <=>n=9 và m=3
Ta có a+71=n2
=> a lớn nhất khi n lớn nhất
=>n=27
=>a=272-71=658
Vậy max a=658
Giả sử n = 8k + 7 là tổng của 3 bình phương
Vì 8k + 7 là số lẻ nên 8k + 7 chỉ có thể tách thành tổng các bình phương của 3 số lẻ hoặc 2 số chẵn 1 số lẻ
Mà số chính phương chia 8 chỉ có thể dư 0; 1 hoặc 4
Do đó, nếu 8k + 7 có thể tách thành tổng 3 số lẻ thì 8k + 7 chia 8 dư 1 + 1 + 1 = 3, vô lý vì 8k + 7 chia 8 dư 7
nếu 8k + 7 có thể tách thành tổng 2 số chẵn 1 số lẻ thì 8k + 7 chia 8 dư 0 + 0 + 1 = 1 hoặc 0 + 4 + 1 = 5 hoặc 4 + 4 + 1 = 9, vô lý vì 8k + 7 chia 8 dư 7=>đpcm
ta có
\(C=444..4000..0+888..8+1=4.10^n\left(1+10+..+10^{n-1}\right)+8.\left(1+10+..+10^{n-1}\right)+1\)
\(=4.10^n\frac{10^n-1}{9}+8\frac{10^n-1}{9}+1=\frac{4.10^{2n}+4.10^n+1}{9}=\left(\frac{2.10^n+1}{3}\right)^2\)
rõ ràng C là số tự nhiên nên \(\frac{2.10^n+1}{3}\) là số tự nhiên, vậy ta có đpcm
minh quang ơi bạn giải thích chi tiết ra đc không