K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 4 2019

Lời giải:

Phản chứng. Giả sử PT đã cho không có nghiệm nào với mọi số thực $a,b,c$.

Điều này tương đương với các PT con

\((1):ax^2+2bx+c=0; (2):bx^2+2cx+a=0;(3): cx^2+2ax+b=0\)không có nghiệm với mọi $a,b,c\in\mathbb{R}$
\(\Rightarrow \left\{\begin{matrix} \Delta'_1=b^2-ac< 0\\ \Delta'_2=c^2-ab< 0\\ \Delta'_3=a^2-bc< 0\end{matrix}\right.\)

\(\Rightarrow b^2-ac+c^2-ab+a^2-bc< 0\)

\(\Leftrightarrow 2b^2-2ac+2c^2-2ab+2a^2-2bc< 0\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2< 0\) (vô lý với mọi $a,b,c$ thực)

Vậy điều giả sử là sai. Nghĩa là pt đã cho luôn có nghiệm với mọi $a,b,c\in\mathbb{R}$