K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2022

\(x+y=1\)

Áp dụng BĐT AM-GM, ta có:

\(\dfrac{x^2}{1}+\dfrac{y^2}{1}\ge\dfrac{\left(x+y\right)^2}{2}=\dfrac{1^2}{2}=\dfrac{1}{2}\)

--> \(x^2+y^2\ge\dfrac{1}{2}\)

 

12 tháng 10 2020

\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\Leftrightarrow\frac{a^2y+b^2x}{xy}\ge\frac{\left(a+b\right)^2}{x+y}\Leftrightarrow\left(a^2y+b^2x\right)\left(x+y\right)\ge xy\left(a+b\right)^2\Leftrightarrow a^2xy+b^2x^2+a^2y^2+b^2xy\ge a^2xy+b^2xy+2abxy\Leftrightarrow a^2y^2-2abxy+b^2x^2\ge0\Leftrightarrow\left(ay-bx\right)^2\ge0\)*đúng*

Đẳng thức xảy ra khi a/b = x/y

9 tháng 12 2019

a) \(x^2+2xy+y^2+1\\ =\left(x+y\right)^2+1\\Do\left(x+y\right)^2>0\forall x\in R\\ \Rightarrow\left(x+y\right)^2+1>0\forall\in R\)

`B = x^2- 2xy + y^2 + 2x - 10y + 17

`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`

`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.

 

26 tháng 7 2023

Mik cảm ơn

8 tháng 8 2019

1) \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)\(\Leftrightarrow\)\(2x^2+2y^2\ge x^2+2xy+y^2\)\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)

2) \(\frac{1}{xy}=\frac{1}{\left(\sqrt{xy}\right)^2}\ge\frac{1}{\left(\frac{x+y}{2}\right)^2}=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)

9 tháng 8 2019

bạn Diệu Linh ơi, bài này bảo chứng minh điều đó là đúng chứ không bảo điều đó là giả thiết nhé bạn, nhưng cũng cảm ơn bạn vì đã giúp mình =))

7 tháng 6 2020

a) x<y

<=> x.x<x.y
<=> x\(^2\)<xy

x<y
<=> x.y<y.y
<=>xy<y\(^2\)

b) áp dụng kết quả từ câu a và tính chất bắc cầu, ta có:
x\(^2\)<xy<y\(^2\)

<=> x\(^2\)<y\(^2\)

x\(^2\)<y\(^2\)

=> x\(^2\).y<y\(^2\).y

<=> x\(^2\)y<y\(^3\)(1)

x\(^2\)<y\(^2\)

=> x\(^2\).x<y\(^2\).x

<=> x\(^3\)<xy\(^2\)(2)
x<y

<=> x.xy<y.xy
<=> x\(^2\)y<xy\(^2\)(3)

Từ (1),(2) và (3) ta có
x\(^3\)<y\(^3\)

a: Ta có: \(y\left(x^2-y^2\right)\cdot\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)

\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)

=0

b: Ta có: \(\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\left(8x^3-\dfrac{1}{27}\right)\)

\(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}\)

\(=\dfrac{2}{27}\)

c: Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)

=0