K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

a) \(n^2+4n+3\)

Vì n là số lẻ nên n : 2 dư 1

Gọi n = 2k + 1

Thay n = 2k + 1 vào \(n^2+4n+3\)

Có : \(n^2+4n+3\) \(=n^2+3n+n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)= ( n + 3 ) ( n + 1 ) (1)

Thay n = 2k + 1 vào (1)

=> (1) = \(\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=2\left(k+2\right)2\left(k+1\right)=4\left(k+2\right)\left(k+1\right)\)

Xét: k + 2; k + 1 là hai số tự nhiên liên tiếp

=> \(\left(k+2\right)\left(k+1\right)\) \(⋮2\)

=> \(4\left(k+2\right)\left(k+1\right)⋮8\)

=> đpcm

26 tháng 9 2017

a) Ta có:

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+1\right)\left(n+3\right)\)

Mà n là số nguyên lẻ nên chia cho 2 dư 1 = 2k + 1 \(\left(k\in Z\right)\)

Do đó \(n^2+4n+3=\left(n+1\right)\left(n+3\right)=\left(2k+1+1\right)\left(2k+1+3\right)=\left(2k+2\right)\left(2k+4\right)=4\left(k+1\right)\left(k+2\right)\)

\(\left(k+1\right)\left(k+2\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.

Vậy \(n^3+4n+3=\left(n+1\right)\left(n+3\right)=4\left(k+1\right)\left(k+2\right)\) chia hết cho 4; chi hết cho 2.

=> \(n^3+4n+3⋮4.2=8\)

Vậy ...