\(\frac{7n-1}{4}\)và\(\frac{5n+3}{12}\)không...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 8 2024

Lời giải:

Giả sử 2 phân số trên có thể đồng thời là số tự nhiên.

Ta có:
$\frac{7n-1}{4}$ là số tự nhiên

$\Rightarrow 7n-1\vdots 4$
$\Rightarrow 7n-1-8n\vdots 4$

$\Rightarrow -n-1\vdots 4\Rightarrow n+1\vdots 4$

$\Rightarrow n=4t-1$ với $t$ tự nhiên.

Khi đó:
$\frac{5n+3}{12}=\frac{5(4t-1)+3}{12}=\frac{20t-2}{12}$
$=\frac{10t-1}{6}$

Vì $10t-1$ lẻ với mọi $t$ tự nhiên nên $10t-1\not\vdots 2$

$\Rightarrow 10t-1\not\vdots 6$

$\Rightarrow \frac{5n+3}{12}$ không là số tự nhiên (trái với giả sử)

Vậy không thể tồn tại stn $n$ để 2 phân số trên đều là số tự nhiên.

6 tháng 12 2015

mik chưa hok phân số bạn ak nếu mk hok rồi thì mik đã trả lời rôi 

sorry nha

17 tháng 1 2018

Bạn vào câu hỏi tương tự nhé! Sẽ có câu trả lời.

Gọi d là ƯCLN(7n+4;5n+3)

Ta có:7n+4\(⋮\)d;5n+3\(⋮\)d

=>5*(7n+4)\(⋮\)d;7*(5n+3)\(⋮\)d

=>35n+20\(⋮\)d;35n+21\(⋮\)d

=>[(35n+21)-(35n+20)]\(⋮\)d

=>[35n+21-35n-20]\(⋮\)d

=>1\(⋮\)d

=>d=1

Vì ƯCLN(7n+4;5n+3)=1 nên phân số \(\frac{7n+4}{5n+3}\) luôn luôn tối giản(nEN)

9 tháng 5 2016

Gọi d là UCLN (7n+4;5n+3)

=>*\(\left(7n+4\right)⋮d\Rightarrow5.\left(7n+4\right)⋮d\)

     *\(\left(5n+3\right)⋮d\Rightarrow7.\left(5n+3\right)⋮d\)

Suy ra: 5.(7n+4)-7.(5n+3) chia hết cho d

=>35n+20-35n-21 chia hết cho d

=>-1 chia hết cho d

=> d chỉ có thể là 1 

=> P/s \(\frac{7n+4}{5n+3}\) tối giản

17 tháng 2 2020

a) Gọi (2n+2,8n+7) là d  \(\left(d\inℕ^∗\right)\)

Vì (2n+2,8n+7) là d

\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\8n+7⋮d\end{cases}}\)

\(\Rightarrow\)(2n+2)-(8n+7)\(⋮\)d

\(\Rightarrow\)(8n+8)-(8n+7)\(⋮\)d

\(\Rightarrow\)1\(⋮\)d

\(\Rightarrow\)d=1

\(\Rightarrow\)(2n+2,8n+7)=1 nên tử số và mẫu số là số nguyên tố cùng nhau

\(\Rightarrow\frac{2n+2}{8n+7}\)là phân số tối giản

Vậy \(\frac{2n+2}{8n+7}\)là phân số tối giản.

Các phần sau tương tự.

22 tháng 4 2020

gọi d là ƯC(5n + 4; 5n + 11)

\(\Rightarrow\hept{\begin{cases}5n+4⋮d\\5n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+12⋮d\\15n+11⋮d\end{cases}}}\)

\(\Rightarrow15n+12-15n-11⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{\pm1\right\}\)

\(\Rightarrow\frac{5n+4}{5n+11}\) là phân số tối giản