Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Giả sử 2 phân số trên có thể đồng thời là số tự nhiên.
Ta có:
$\frac{7n-1}{4}$ là số tự nhiên
$\Rightarrow 7n-1\vdots 4$
$\Rightarrow 7n-1-8n\vdots 4$
$\Rightarrow -n-1\vdots 4\Rightarrow n+1\vdots 4$
$\Rightarrow n=4t-1$ với $t$ tự nhiên.
Khi đó:
$\frac{5n+3}{12}=\frac{5(4t-1)+3}{12}=\frac{20t-2}{12}$
$=\frac{10t-1}{6}$
Vì $10t-1$ lẻ với mọi $t$ tự nhiên nên $10t-1\not\vdots 2$
$\Rightarrow 10t-1\not\vdots 6$
$\Rightarrow \frac{5n+3}{12}$ không là số tự nhiên (trái với giả sử)
Vậy không thể tồn tại stn $n$ để 2 phân số trên đều là số tự nhiên.
a)Gọi ƯC(5n+3,7n+4)=d
Ta có: 5n+3 chia hết cho d=>7.(5n+3)=35n+21 chia hết cho d
7n+4 chia hết cho d=>5.(7n+4)=35n+20 chia hết cho d
=>35n+21-35n-20=1 chia hết cho d
=>d=Ư(1)=1
=>d=1
=>(5n+3,7n+4)=1
=>Phân số 5n+3/7n+4 là phân số tối giản
=>ĐPCM
mik chưa hok phân số bạn ak nếu mk hok rồi thì mik đã trả lời rôi
sorry nha
Bạn vào câu hỏi tương tự nhé! Sẽ có câu trả lời.