Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lại copy!!!
Giải:
Áp dụng BĐT Bunhiacopski
Xét cặp số \(\left(1,1,1\right)\) và \(\left(a,b,c\right)\) ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1.a+1.b+1.c\right)^2\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\) (Đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Ta có: \(a^2 + b^2 + c^2 = ab + ac + bc \)
\(\Leftrightarrow 2a^2 + 2b^2 + 2c^2 = 2ab + 2ac + 2bc\)
\(\Leftrightarrow 2a^2 + 2b^2 + 2c^2 - 2ab -2ac - 2bc = 0\)
\(\Leftrightarrow (a^2 - 2ab +b^2) + (a^2 - 2ac + c^2) + (b^2 - 2bc +c^2) = 0\)
\(\Leftrightarrow (a - b)^2 + (a-c)^2 + (b-c)^2 = 0\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\) \(\Leftrightarrow\) \(a=b=c\)
Ta có :
\(a^2+b^2+c^2=ab+ac+bc\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+ac+bc\right)\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)
\(\Rightarrow2a^2+2b^2+2c^2-\left(2ab+2ac+2bc\right)=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Rightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2ac-2bc=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\)hoặc (a - b)2=0 hoặc (b - c)2=0 hoặc (c - a)2=0 \(\Leftrightarrow\)a - b = 0 hoặc b - c = 0 hoặc c - a = 0\(\Leftrightarrow\)a = b; b = c; c = a (1)
Từ (1)
\(\Rightarrow\)a = b = c
nói hoặc là sai rồi vì 3 trường hợp này xảy ra trong 1 đẳng thức
1) a2 +b2 +c2>= ab +bc +ca <=> 2a2 +2b2 +2c2 >=2ab +2bc +2ca <=> 2a2 +2b2 +2c2 -2ab -2bc -2ca >= 0
<=> (a -b)2 +(b -c)2 + (c -a)2 >= 0 (bđt đúng với mọi a, b, c)
2) Áp dụng bđt Cauchy với a, b, c > 0 ta có :
\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc.ab}{ac}}=2b\)
tương tự : \(\frac{ab}{c}+\frac{ca}{b}\ge2a\); \(\frac{ca}{b}+\frac{bc}{a}\ge2c\)
Cộng từng vế 3 bđt trên suy ra đpcm
3) Từ gt a a +b =c => a +b -c =0 => (a +b -c)2 = 0 => a2 +b2 +c2 +2ab -2bc -2ca = 0
=> a2 +b2 +c2 = 2bc + 2ca -2ab => (a2 +b2 +c2)2 = (2bc +2ca -2ab)2
=> a4 +b4 +c4 +2a2b2 +2b2c2 +2c2a2 = 4b2c2 +4c2a2 +4a2b2 +4abc2-4a2bc - 4ab2c
=> a4 +b4 +c4 -2a2b2 -2b2c2 -2c2a2 = 4abc(c -a -b) = 4abc.0 =0
Vậy a4 +b4 +c4 = 2a2b2 +2b2c2 +2c2a2
Mọi người giúp mình bài nay với. Mai mình nộp bài mà mình lại học toán hơi kém tí. Thanhks trước.
Bài 1: cho a, b, c thuộc R.
Chứng minh a2 + b2 + c2 >= ab+ac+bc
Bài 2:cho a, b, c >0.
Chứng minh (bc/a)+(ac/b)+(ab/c)>= a+b+c
Bài 3: cho a, b, c thoả mãn a+b=c.
Chứng minh a4 +b4 +c4 =2a2b2 +2b2c2 + 2a2c2
a: Ta có: \(a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
=>a=b=c
b: ta có: \(x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
a2 + b2 + c2 - ab - ac - bc ≥ 0
<=> 2( a2 + b2 + c2 - ab - ac - bc) ≥ 0
<=> (a2 - 2ac + c2) + (a2 - 2ab + b2) + (b2 - 2bc + c2) > 0
<=> (a - c)2 + (a - b)2 + ( b - c)2 > 0
Điều này luôn đúng với mọi a; b; c
=> điều cần chứng minh
Dấu "=" xảy ra <=> a - c = 0; a - b = 0 ; b - c = 0 <=> a = b = c
\(BPT\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)
<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
<=> \(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
BĐT cuối luôn đúng vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\)
=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Dấu '=' của BĐT xảy ra khi a = b = c
Bài 2:
\(A=\left(2ac-a^2-c^2+b^2\right)\left(2ac+a^2+c^2-b^2\right)\)
\(=\left[b^2-\left(a-c\right)^2\right]\left[\left(a+c\right)^2-b^2\right]\)
\(=\left(b-a+c\right)\left(b+a-c\right)\left(a+c-b\right)\left(a+c+b\right)\)>0
BPT <=> a^2 + b^2 + c^2 - ab - bc - ca >=0
=> 2 (a^2 + b^2 + c^2 - ab - bc -ca)>=0
=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc- 2ac >=0
=> a^2 - 2ab + b^2 + b^2 - 2bc+ c^2 + c^2 - 2ac +a^2 >0
=> ( a - b)^2 + ( b- c)^2 + ( c-a)^2 >0
Luôn đúng
Dấu '=' xảy ra khi a = b= c
nhân 2 vào 2 vế rồi chuyển vế sau đó khai triển ta được (a-b)(b-c)(c-a) >=0
luôn đúng với mọi a;b;c
suy ra ĐPCM
ta có \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(\(\Rightarrow\)a=b=c)
<=> \(a^2+b^2+c^2\ge ab+bc+ca\)