Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số chính phương đã cho là a^2 (a là số tự nhiên)
* C/m a^2 chia 3 dư 0 hoặc dư 1
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2.
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên)
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1.
Vậy số chính phương chia cho 3 dư 0 hoặc 1
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé.
* Mình nghĩ phải là số chính phương lẻ chia 8 dư 1 đúng không bạn?
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé:
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên)
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1.
Vậy số chính phương khi chia cho 3 không thể dư 2 mà chỉ có thể dư 1 hoặc 0
(2k+1) 2k (2k-1)
(2k+1)^2 +4k^2 +(2k-1)^2=4k^2 +4k +1 +4k^2 +4k^2 -4k +1=12k^2+2 chia hết cho 2 không chia hết cho 4 nên không là số chính phương
Mình ko chắc đã đúng đâu
64 là số chính phương vì \(64=8^2\) và \(8\in\mathbb{N}\)
Chứng minh rằng mọi số nguyên tố lớn hơn 2 đều viết được dưới dạng 4n + 1 hoặc 4n + 3 với n thuộc Z.
Số dư khi chia cho 4 là 0 ; 1 ; 2 ; 3.
Vậy số chia cho 4 có dạng 4n ; 4n + 1 ; 4n + 2 hoặc 4n + 3
Số nguyên tố lớn hơn 2 không có dạng 4n và 4n + 2 vì 4n chia hết cho 4 còn 4n + 2 chia hết cho 2.
Vậy số nguyên tố lớn hơn 2 có dạng 4n + 1 hoặc 4n + 3
Số dư khi chia cho 4 là : 0 , 1 , 2 , 3
Vậy số chia cho 4 có dạng 4n ; 4n + 1 ; 4n + 2 ; hoặc 4n + 3
Số nguyên tố lớn hơn 2 không có dạng 4n và 4n + 2 vì 4n chia hết cho 4 còn 4n + 2 chia hết cho 2 .
Vậy số nguyên tố lớn hơn 2 có dạng 4n + 1 hoặc 4n + 3