K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2020

a)

A B C D O

a) ABCD là hình thoi

=> ABCD là hình bình hành

=> giao điểm O của AC và BD là tâm đối xứng của ABCD 

b)

A B C D O M' M M1' M1

Xét hình thoi ABCD, gọi O là giao điểm của 2 đường chéo.

* Ta chứng minh: đường chéo BD là trục đối xứng của hình

Lấy điểm M bất kì thuộc hình thoi. Không mất tổng quát, M nằm trên CD.

Gọi M’ đối xứng với M qua đường thẳng BD. Ta chứng minh điểm M’ cũng thuộc hình thoi

+ Gọi I là giao điểm của MM’ và BD.

Xét tam giác DIM và DIM’ có :

\(\widehat{DIM}=\widehat{DIM'}=90^o\)

DI chung

IM= IM’ ( do M và M’ đối xứng với nhau qua BD)

\(=>\Delta DIM=\Delta DIM'\left(c.g.c\right)\)

=> DM = DM' và \(\widehat{IDM}=\widehat{IDM'}\left(1\right)\)

Ta lại có: ABCD là hình thoi nên

\(\widehat{IDA}=\widehat{IDC}\)hay \(\widehat{IDM}=\widehat{IDA}\left(2\right)\)

Từ (1) và (2) suy ra, điểm M’ nằm trên cạnh AD hay điểm M’ thuộc hình thoi

=> BD là trục đối xứng của hình thoi.

*Chứng minh tương tự, ta có: AC là trục đối xứng của hình thoi 

15 tháng 11 2021

 

undefinedundefinedundefined