Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=3+3^2+3^3+3^4+...+3^9\)
\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)
\(S=3\left(1+3+9\right)+3^4\left(1+3+9\right)+3^7\left(1+3+9\right)\)
\(S=3\cdot13+3^4\cdot13+3^7\cdot13\)
\(S=13\left(3+3^4+3^7\right)\)
\(S=13\cdot3\left(1+3^3+3^6\right)\)
\(S=39\cdot\left(1+3^3+3^6\right)\)
\(\Rightarrow S\) ⋮ 39
Để chứng minh rằng s = 3 + 3 mũ 2 + 3 mũ 3 + ... + 3 mũ 7 + 3 mũ 8 + 3 mũ 9 chia hết cho (-39), ta sử dụng công thức tổng cấp số cộng:
S = a(1-r^n)/(1-r)
Trong đó:
S là tổng của cấp số cộng
a là số hạng đầu tiên của cấp số cộng
r là công bội của cấp số cộng
n là số lượng số hạng trong cấp số cộng
Áp dụng công thức trên, ta có:
a = 3
r = 3
n = 9
S = 3(1-3^9)/(1-3) = 29,523
Ta thấy rằng S không chia hết cho (-39), do đó giả thiết ban đầu là sai.
P = 32 + 62 + 92 + ... + 302
P = 32 . (12 + 22 + 32 + ... + 102)
P = 9 . 385
P = 3465
a) C = 106 + 57
C = 26 . 56 + 57
C = 56 . (26 + 5)
C = 56 . (64 + 5)
C = 56 . 69 chia hết cho 69
b) 310 . 199 - 39 . 500
= 39 . (3.199 - 500)
= 39 . (597 - 500)
= 39 . 97 chia hết cho 97
\(\left(27^{21}-9^{31}-3^{60}\right)\)
\(=\left[\left(3^3\right)^{21}-\left(3^2\right)^{31}-3^{60}\right]\)
\(=\left(3^{63}-3^{62}-3^{60}\right)\)
\(=3^{60}\left(3^3-3^2-3\right)\)
\(=3^{60}.17\)
\(\Rightarrow\left(27^{21}-9^{31}-3^{60}\right)⋮17\)
\(\RightarrowĐPCM\)
\(\left(27^{21}-9^{31}-3^{60}\right)\)
\(=\left(3^3\right)^{21}-\left(3^2\right)^{31}-3^{60}\)
\(=\left(3^{63}-3^{62}-3^{60}\right)\)
\(=3^{60}\left(3^3-3^3-3\right)\)
\(=3^{60}.17\)
\(\Rightarrow\left(27^{21}-9^{31}-3^{60}\right)⋮17\)
Vậy (2721 - 931 - 360 ) \(⋮\)17
Lời giải:
a)
Ta có:
\(1991\equiv 1\pmod {10}\Rightarrow 1991^{1997}\equiv 1^{1997}\equiv 1\pmod {10}(1)\)
\(1997\equiv 7\pmod {10}\Rightarrow 1997^{1996}\equiv 7^{1996}\pmod {10}(2)\)
Mà \(7^2\equiv -1\pmod {10}\Rightarrow 7^{1996}\equiv (-1)^{998}\equiv 1\pmod {10}(3)\)
Từ \((1);(2);(3)\Rightarrow 1991^{1997}-1997^{1996}\equiv 1-1\equiv 0\pmod {10}\) (đpcm)
b)
\(2^9+2^{99}=2^9(1+2^{90})\)
Ta thấy $2^{10}=1024\equiv -1\pmod {25}$
$\Rightarrow 2^{90}\equiv (-1)^9\equiv -1\pmod {25}$
$\Rightarrow 1+2^{90}\equiv 0\pmod {25}$ hay $1+2^{90}\vdots 25$
Mà $2^9\vdots 4$
Do đó:
$2^9+2^{99}=2^9(1+2^{90})\vdots 100$ (đpcm)
\(\dfrac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^{29}\cdot9^{10}-7\cdot2^{29}\cdot27^6}\)
\(=\dfrac{5\cdot2^{30}\cdot3^{18}-2^2\cdot2^{27}\cdot3^{20}}{5\cdot2^{29}\cdot3^{20}-7\cdot2^{29}\cdot3^{18}}\)
\(=\dfrac{2^{29}\cdot3^{18}\left(5\cdot2-3^2\right)}{2^{29}\cdot3^{18}\left(5\cdot3^2-7\right)}\)
\(=\dfrac{10-9}{5\cdot9-7}=\dfrac{1}{38}\)
Xem cách làm câu (b);(c);(d)
Bạn tham khảo:
Câu hỏi của Nguyễn Ngọc Thảo My - Toán lớp 7 - Học toán với OnlineMath
các bạn giúp mik nha
Cho A bằng 5^2021+1 phần 5^2022+1 ; B bằng 5^2020+1 phần 5^2021+1. Hãy so sánh A và B