K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2015

a, Ta có : 222 ≡ 1(mod 13) nên 222^333 ≡ 1 (mod 13) 
Và 333^2 ≡ -1 (mod 13) nên 333^222 ≡ -1 (mod 13) 
Cộng lại ta có: 
222^333 + 333^222 ≡ 0 (mod 13) đpcm 

b, 2222 ≡ 3 (mod 7) ; 3³ ≡ -1 (mod 7) ; chú ý: 5555 = 3*1851 + 2 
=> 2222^5555 ≡ 3^5555 ≡ (3³)^1851.3² ≡ (-1)^1851.9 ≡ -9 ≡ -2 ≡ 5 (mod 7) 
5555 ≡ 4 (mod 7) ; 4³ ≡ 1 (mod 7) ; 2222 = 3*740 + 2 
=> 5555^2222 ≡ 4^2222 ≡ (4³)^740.4² ≡ (1).16 ≡ 2 (mod 7) 
vậy: 2222^5555 + 5555^2222 ≡ 5+2 ≡ 0 (mod 7) => đpcm 

( tick đúng cho mink nha)

12 tháng 2 2016

Là điều phải chứng minh đó

11 tháng 1 2020

b, 5555\(\equiv\)4 (mod 7)=>55552222\(\equiv\)42222 (mod 7)(1)

2222\(\equiv\)3 (mod 7)=>2222=-4 (mod 7)=>22225555\(\equiv\)(-4)5555 (mod 7)(2)

Từ (1)  và  (2)=>55552222+22225555\(\equiv\)42222+45555 (mod 7)

                     =>55552222+22225555\(\equiv\)42222 (1-43333) (mod 7)

Ta có:43 \(\equiv\)1 (mod 7)

=>(43)1111\(\equiv\)11111 (mod 7)

=>43333\(\equiv\)1 (mod 7)

=>-43333\(\equiv\)-1(mod 7)

=>1-43333\(\equiv\)0 (mod 7)

=> 55552222+22225555\(\equiv\)0 (mod 7)

Vậy 55552222+22225555\(⋮\)7

24 tháng 11 2015

C=đền bài

Ta có:2222 +4 hia hết cho 7 suy ra 2222=-4 (mod7)

suy ra :2222\(^{55555}\)=(-4)\(^{5555}\)(mod7) 55555-4 chia hết cho 7 suy ra 5555=4(mod7)

suy ra 55555\(^{2222}\)=4\(^{2222}\)(mod7)

suy ra 2222\(^{55555}\)5555\(^{2222}\)=(-4)\(^{5555}\)+4\(^{2222}\)(mod7)

mà 4\(^{2222}\)=(-4)\(^{2222}\) suy ra (-4)\(^{5555}\)+4\(^{2222}\)= tự lm típ nha bn mẹt quá

24 tháng 4 2018

Ta có 2222 + 4 \(⋮\) 7 => 2222 ≡ - 4 (mod 7) => 22225555 ≡ (- 4)5555(mod 7)

5555 - 4 \(⋮\)7 => 5555 ≡ 4 (mod 7) => 55552222 ≡ 42222 (mod 7)

=> 22225555 + 55552222 ≡ (- 4)5555 + 42222 (mod 7)

Mà 42222 = (-4)2222 => (- 4)5555 + 42222 = (-4)2222. 43333 + 42222

= (-4)2222. 43333 - (- 4)2222 = (-4)2222(43333 - 1) ≡ (43) - 1(mod 7) (1)

Ta lại có : 43 ≡ 1(mod 7) => 43 - 1= 63 7 => 43 - 1 ≡ 0 (mod 7) (2)

Nên (- 4)5555 + 42222 ≡ 0 (mod 7)

Từ (1) và (2) => 22225555 + 55552222 chia hết cho 7.

6 tháng 10

sai bét

 

20 tháng 3 2016

24^1917 + 14^1917 
=(24+14) (lương liên hợp) 
=38(lương liên hợp) 
Chia hết cho 19 

a có: 
A= 2^9 +2^99=2^2(2^7 + 2^97)=4((2^7 + 2^97) đồng dư 0 (mod 4). 
2^5 = 32 đồng 7 (mod 25) 
=> 2^10 đồng dư 7^2 (mod 25) đồng dư -1(mod 25). 
mặt khác: 
A= 2^9 +2^99 =2^9(1+2^90) 
mà (1+2^90) = 1 + (2^10)^9 đồng dư 1 -1=0 (mod 25) 
=> 2^9 +2^99 đồng dư 0 (mod 25) 
BSCNN của 4 và 25 =100 
=> A đồng dư 0 (mod 100) 
hay A chia hết cho 100. 

22226 đồng dư 1 (mod7)         
và 5555=6x925+5
=> 22225555 đồng dư 2222 5 (mod7)
mà 22225 = 2222 2x 22222 x 2222 
22222 đồng dư 2 (mod 7) => 2222 5  đồng dư 2x2x2222 (mod 7)
=> 22225555 đồng dư với 5 (mod 7)
Tương tự có 55552222 đông dư 2 (mod 7)
Vậy => 22225555+55552222 đồng dư 5+2=7 (mod 7)
=> 22225555+55552222 đồng dư 0 (mod7)
=>đpcm

25 tháng 12 2016

de qua di

18 tháng 1 2021

a)

Ta có: \(222^{333}=\left(222^3\right)^{111}\equiv1^{111}=1\left(mod13\right)\)

\(\Rightarrow222^{333}+333^{222}\equiv1+333^{222}=1+\left(333^2\right)^{111}\)

\(\equiv1+12^{111}\equiv1+12^{110}\cdot12\equiv1+\left(12^2\right)^{55}\cdot12\)

\(\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)

Vậy $222^{333}+333^{222}$ chia hết cho $13.$

b) Ta có:

\(3^{105}\equiv\left(3^3\right)^{35}\equiv1^{35}\equiv1\) (mod13)

\(\Rightarrow3^{105}+4^{105}\equiv1+4^{105}\equiv1+\left(4^3\right)^{35}\)

\(\equiv1+12^{35}\equiv1+\left(12^2\right)^{17}\cdot12\equiv1+1\cdot12\equiv13\equiv0\left(mod13\right)\)

Vậy $3^{105}+4^{105}$ chia hết cho $13.$

Lại có:

\(3^{105}\equiv\left(3^3\right)^{35}\equiv5^{35}\equiv\left(5^5\right)^7\equiv1\left(mod11\right)\)

\(4^{105}\equiv\left(4^3\right)^{35}\equiv9^{35}\equiv\left(9^5\right)^7\equiv1\left(mod11\right)\)

Từ đây:\(3^{105}+4^{105}\equiv1+1\equiv2\left(mod11\right)\)

Vậy $3^{105}+4^{105}$ không chia hết cho $11.$

P/s: Rất lâu rồi không giải, không chắc.