Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)
b: \(5A=5+5^2+...+5^{51}\)
\(\Leftrightarrow4A=5^{51}-1\)
hay \(A=\dfrac{5^{51}-1}{4}\)
Bài 3:
\(S=\left(1^2+2^3+3^3+...+10^2\right)\cdot2=385\cdot2=770\)
\(bx^2=ay^2\Leftrightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}\Leftrightarrow\left(\dfrac{x^2}{a}\right)^{1010}=\left(\dfrac{y^2}{b}\right)^{1010}\\ \Leftrightarrow\dfrac{x^{2020}}{a^{1010}}=\dfrac{y^{2020}}{a^{1010}}\)
Áp dụng t/c dtsbn:
\(\dfrac{x^{2020}}{a^{1010}}=\dfrac{y^{2020}}{b^{1010}}=\dfrac{x^{2020}+y^{2020}}{a^{1010}+b^{1010}}\left(3\right)\)
Đặt \(\dfrac{x^2}{a}=\dfrac{y^2}{b}=k\Leftrightarrow x^2=ak;y^2=bk\)
\(x^2+y^2=1\Leftrightarrow ak+bk=1\Leftrightarrow k\left(a+b\right)=1\Leftrightarrow a+b=\dfrac{1}{k}\)
\(\Leftrightarrow\dfrac{2}{\left(a+b\right)^{1010}}=\dfrac{2}{\left(\dfrac{1}{k}\right)^{1010}}=2:\dfrac{1}{k^{1010}}=k^{1010}\left(1\right)\)
Mà \(\dfrac{x^{2020}}{a^{1010}}=\dfrac{\left(x^2\right)^{1010}}{a^{1010}}=\dfrac{a^{1010}k^{1010}}{a^{1010}}=k^{1010}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\) ta được đpcm
\(\left(1+\dfrac{2}{3}\right).\left(1+\dfrac{2}{4}\right).\left(1+\dfrac{2}{5}\right)....\left(1+\dfrac{2}{2020}\right).\left(1+\dfrac{2}{2021}\right)\)
= \(\dfrac{5}{3}.\dfrac{6}{4}.\dfrac{7}{5}.\dfrac{8}{6}.\dfrac{9}{7}....\dfrac{2022}{2020}.\dfrac{2023}{2021}\)
= \(\dfrac{1}{3}.\dfrac{1}{4}.2022.2023\)
= \(\dfrac{337.2023}{2}\)
= \(\dfrac{\text{681751}}{2}\)
A = 1/1^2 + 1/2^2 + 1/3^2 + ... + 1/2020^2
1/2^2 < 1/1.2
1/3^2 < 1/2.3
...
1/2020^2 < 1/2019.2020
=> A < 1 + 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/2019*2020
=> A < 1 + 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2019 - 1/2020
=> A < 2 - 1/2020
=> A < 4039/2020 < 7/4
=> a < 7/4