Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=ax^{2\: }+bx+c\)
\(\Rightarrow f\left(1\right)=a\cdot1^2+b\cdot1+c=a+b+c\)
Ta có: \(\hept{\begin{cases}a+3c=2019\\a+2b=2020\end{cases}}\)
\(\Rightarrow a+3c+a+2b=2019+2020\)
\(\Leftrightarrow2a+2b+3c=4039\)
\(\Leftrightarrow2\left(a+b+c\right)+c=4039\)
Vì a,b,c không âm => 2(a+b+c)\(\le2\left(a+b+c\right)+c=4039\)
\(\Leftrightarrow2\left(a+b+c\right)=4039\)
\(\Leftrightarrow a+b+c=\frac{4039}{2}\)
\(\Leftrightarrow a+b+c=2019\frac{1}{2}\)
\(\Rightarrow f\left(1\right)\le2019\frac{1}{2}\left(đpcm\right)\)
\(P=\left(ad-bc+1\right)^{2018}+2019^{(∗)}\)
\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)\)
\(\Rightarrow\frac{1}{c}=\frac{1}{2}\frac{b+d}{bd}\)
\(\Leftrightarrow2bd=c\left(b+d\right)\)
\(\Leftrightarrow\left(a+c\right)d=c\left(b+d\right)\)
\(\Leftrightarrow ad+cd=bc+cd\)
\(\Leftrightarrow ad=bc\)
Vì ad = bc nên ad - bc = 0
Thay vào (*) ta có \(P=\left(0+1\right)^{2018}+2019=1+2019=2020\)
a, Vì \(\left(x-1\right)^2\ge0\Rightarrow A=\left(x-1\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi x - 1 = 0 <=> x = 1
Vậy GTNN của A=2018 khi x=1
b, Vì \(\hept{\begin{cases}\left(x+2\right)^{2018}\ge0\\\left(y-3\right)^{2020}\ge0\end{cases}\Rightarrow\left(x+2\right)^{2018}+\left(y-3\right)^{2020}\ge0}\)
\(\Rightarrow B=\left(x+2\right)^{2018}+\left(y-3\right)^{2020}+2019\ge2019\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+2=0\\y-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy GTNN của B = 2019 khi x=-2,y=3
ta có
A = ( x - 1 )2 + 2018
=( x - 1 )2 + 2018≥2018
dấu "=" xảy ra khi ( x - 1 )2=0=>x=1
vs min A=2018 khi x=1
\(B=\frac{1^2}{2^2-1}.\frac{3^2}{4^2-1}...\frac{2019^2}{2020^2-1}\)
\(=\frac{1^2}{\left(2-1\right)\left(2+1\right)}.\frac{3^2}{\left(4-1\right)\left(4+1\right)}...\frac{2019^2}{\left(2020-1\right)\left(2020+1\right)}\)
\(=\frac{1^2}{1.3}.\frac{3^2}{3.5}...\frac{2019^2}{2019.2021}=\frac{1}{2021}\)