Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2015}+\frac{1}{2016}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{1003}\right)\)
\(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2016}\)
Đặt A=1-1/2+1/3-1/4+.......+1/2005-1/2006
=>A= (1+1/3+1/5+...+1/2005)-(1/2+1/4+1/6+.....+1/2006)
=>A=(1+1/2+1/3+...+1/2005)-2.(1/2+1/4+1/6+...+1/2006)
=>A=(1+1/2+1/3+....+1/2005)-(1+1/2+1/3+...+1/1003)
=>A=1/1004+1/1005+.....+1/2006
Vậy A=1/1004+1/1005+.....+1/2006 ( Điều phải chứng minh )
+ Từ bài toán tổng quát
(n-1).n.(n+1)=n3 - n => n3 = (n-1).n.(n+1) + n
\(\Rightarrow\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2006^3}=\)
\(=\frac{1}{1.2.3+2}+\frac{1}{2.3.4+3}+\frac{1}{3.4.5+4}+\frac{1}{2005.2006.2007-2006}=A\)
\(\Rightarrow A< \frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2005.2006.2007}=B\)
\(\Rightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2005.2006.2007}\)
\(2B=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2007-2005}{2005.2006.2007}\)
\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2005.2006}-\frac{1}{2006.2007}\)
\(2B=\frac{1}{2}-\frac{1}{2006.2007}\Rightarrow B=\frac{1}{4}-\frac{1}{2.2006.2007}< \frac{1}{4}\)
\(\Rightarrow A< \frac{1}{4}\)
A xp=x+x2+x^3+x^4+..................+x^2016
=>xp-p= x^2016-1 ban nhe
B ap dung dau hieu chia het cho 3 la tong chu so chia het cho 3
Nếu \(n>0\Rightarrow\left(n-1\right)n\left(n+1\right)=n^3-n< n^3.\)
\(\Rightarrow VT< \frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2005.2006.2007}\)
\(\Rightarrow2.VT< \frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2005.2006.2007}\)
\(\Rightarrow2.VT< \frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2007-2005}{2005.2006.2007}\)
\(\Rightarrow2VT< \frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2005.2006}-\frac{1}{2006.2007}\)
\(\Rightarrow2.VT< \frac{1}{2}-\frac{1}{2006.2007}\Rightarrow VT< \frac{1}{4}-\frac{1}{2.2006.2007}< \frac{1}{4}\)