Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt{n+1}-\sqrt{n}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}\)
\(=\dfrac{n+1-n}{\sqrt{n+1}+\sqrt{n}}=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}< \dfrac{1}{\sqrt{n}+\sqrt{n}}=\dfrac{1}{2\sqrt{n}}\)
\(\Rightarrow2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}\left(1\right)\)
Ta lại có: \(\sqrt{n}-\sqrt{n-1}=\dfrac{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n-1}\right)}{\sqrt{n}+\sqrt{n-1}}\)
\(=\dfrac{n-n+1}{\sqrt{n}+\sqrt{n-1}}=\dfrac{1}{\sqrt{n}+\sqrt{n-1}}>\dfrac{1}{\sqrt{n}+\sqrt{n}}=\dfrac{1}{2\sqrt{n}}\)
\(\Rightarrow2\left(\sqrt{n}-\sqrt{n-1}\right)>\dfrac{1}{\sqrt{n}}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
\(\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}>\dfrac{2}{\sqrt{n}+\sqrt{n+1}}=\dfrac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}=2\left(\sqrt{n+1}-\sqrt{n}\right)\left(1\right)\)
\(\dfrac{1}{\sqrt{n}}=\dfrac{2}{\sqrt{n}+\sqrt{n}}< \dfrac{2}{\sqrt{n}+\sqrt{n-1}}=\dfrac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{\left(\sqrt{n}+\sqrt{n-1}\right)\left(\sqrt{n}-\sqrt{n-1}\right)}=2\left(\sqrt{n}-\sqrt{n-1}\right)\left(2\right)\)
\(\left(1\right)\left(2\right)\RightarrowĐpcm\)
Xét dạng tổng quát có: \(\frac{1}{\sqrt{n+1}\left(n+1\right)+n\sqrt{n}}=\frac{1}{\left(\sqrt{n}+\sqrt{n+1}\right)\left[n-\sqrt{n\left(n+1\right)}+n+1\right]}\)
\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(\sqrt{n}+\sqrt{n+1}\right)\left[n-\sqrt{n\left(n+1\right)}+n+1\right]}=\frac{\sqrt{n+1}-\sqrt{n}}{n+\left(n+1\right)-\sqrt{n\left(n+1\right)}}\)
\(< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}-\sqrt{n\left(n+1\right)}}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng vào bài toán ta có:
\(\frac{1}{2\sqrt{2}+1\sqrt{1}}< 1-\frac{1}{\sqrt{2}}\)
\(\frac{1}{3\sqrt{3}+2\sqrt{2}}< \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
.....
\(\frac{1}{\left(n+1\right)\sqrt{n+1}+n\sqrt{n}}< \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Cộng vế theo vế =>\(VT< 1-\frac{1}{\sqrt{n+1}}\left(ĐPCM\right)\)
Ta có \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=n\left(n+3\right)\left(n+1\right)\left(n+2\right)\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
Đặt \(n^2+3n=a\in N\Rightarrow\left(n^2+3n\right)\left(n^2+3n+2\right)=a\left(a+2\right)\)
\(=a^2+2a\)
Mà \(a^2\le a^2+2a< a^2+2a+1\Rightarrow a^2\le a^2+2a< \left(a+1\right)^2\)
\(\Rightarrow a\le\sqrt{a^2+2a}< a+1\Rightarrow a\le\left[\sqrt{a^2+2a}\right]< a+1\)
\(\Rightarrow\left[\sqrt{a^2+2a}\right]=a\)
\(\Rightarrow\left[n\left(n+1\right)\left(n+2\right)\left(n+3\right)\right]=n^2+3n=n\left(n+3\right)\)
Vậy:
\(\sum\sqrt{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\sum n\left(n+3\right)=\dfrac{n\left(n+1\right)\left(n+5\right)}{3}\)
Đặt biểu thức trên là A.
Ta có: \(\left(\sqrt{n+1}+\sqrt{n}\right)\)).(\(\sqrt{n+1}-\sqrt{n}\))=1
=>\(\frac{1}{\left(\sqrt{n+1}+\sqrt{n}\right)}=\left(\sqrt{n+1}-\sqrt{n}\right)\)
Từ trên: \(\frac{1}{\left(2n+1\right).\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1+n}\)
Lại có :\(\frac{\sqrt{n+1}-\sqrt{n}}{\left(n+1\right)+n}< \frac{1}{2}.\frac{\sqrt{n+1}-\sqrt{n}}{\left(n+1\right).n}=\frac{1}{2}.\left(\frac{1}{n}-\frac{1}{n+1}\right)\)(Bất đẳng thức Cô-si)
Thế số vào, ta được :
A<\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...-\frac{1}{\sqrt{n+1}}\right)\)=\(\frac{1}{2}.\left(1-\frac{1}{\sqrt{n+1}}\right)< \frac{1}{2}\)
Chứng minh
\(\sqrt[3]{\left(n+1\right)^2}-\sqrt[3]{n^2}< \frac{2}{3\sqrt[3]{n}}\)
\(\Leftrightarrow3\sqrt[3]{n\left(n+1\right)^2}< 2+3n\)
Lập phương 2 vế rồi rút gọn được
\(\Leftrightarrow9n+8>0\)
Đúng với mọi n dương. Ta có ĐPCM.
Cái còn lại tương tự
Vì \(n\in Z^+\)nên\(n\left(n+1\right)\left(n+2\right)>n^3\Rightarrow\sqrt[3]{n\left(n+1\right)\left(n+2\right)}>n\)
\(\Rightarrow\sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}+...+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}>n\)(1)
Lại có:\(n^2+2n+1>n^2+2n\Rightarrow\left(n+1\right)^2>n\left(n+2\right)\Rightarrow\left(n+1\right)^3>n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow n+1>\sqrt[3]{n\left(n+1\right)\left(n+2\right)}\\ \Rightarrow\sqrt[3]{n^3+3n^2+3n+1}>\sqrt[3]{n^3+3n^2+2n}\)
\(\Rightarrow\sqrt[3]{n^3+3n^2+2n+n+1}>\sqrt[3]{n^3+3n^2+2n+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}\)
\(\Rightarrow\sqrt[3]{\left(n+1\right)^3}>\sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}\)
Tương tự \(\Rightarrow n+1>\sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}+...+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}\)(2)
Từ (1) và (2) suy ra:
\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}+...+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}< n+1\)
\(n\in Z^+\)nên n2 < n2 + 2n < n2 + 2n + 1 <=> n2 < n(n + 2) < (n + 1)2 => n3 < n(n + 1)(n + 2) < (n + 1)3
=>\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)}< n+1\)
=>\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)}< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+n}\)\(< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+n+1}\)\(=\sqrt[3]{\left(n+1\right)\left(n^2+2n+1\right)}=\sqrt[3]{\left(n+1\right)\left(n+1\right)^2}=n+1\)
=>\(n< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+n}\)
\(< \sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)+\sqrt[3]{n\left(n+1\right)\left(n+2\right)}}}< n+1\)
Tiếp tục như vậy,ta có đpcm.