K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2023

\(P=n^3+n+2\)

\(=\left(n^3+1\right)+\left(n+1\right)\)

\(=\left(n+1\right).\left(n^2-n+1\right)+n+1\)

\(=\left(n+1\right).\left(n^2-n+2\right)\)

Nhận thấy với \(n\inℕ^∗\Rightarrow n+1>0;n^2-n+2>0\)

nên P là hợp số 

4 tháng 9 2019

a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.4⋮25.4=100\)

b) \(n^2\left(n-1\right)-2n\left(n-1\right)=\left(n^2-2n\right)\left(n-1\right)\)

\(=n\left(n-1\right)\left(n-2\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\)

c) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^3-n⋮6\)

 
4 tháng 9 2019

a,25^n.24

mà 25^n :5

3 tháng 8 2023

\(=n^2\left(n^4-n^2+2n+2\right)=\)

\(=n^2\left[n^2\left(n^2-1\right)+2\left(n+1\right)\right]=\)

\(=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]=\)

\(=n^2\left[\left(n+1\right)\left(n^3-n^2+2\right)\right]=\)

\(=n^2\left\{\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\right\}=\)

\(=n^2\left\{\left(n+1\right)\left[\left(n^3+1\right)-\left(n-1\right)\left(n+1\right)\right]\right\}=\)

\(=n^2\left\{\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n-1\right)\left(n+1\right)\right]\right\}=\)

\(=n^2\left(n+1\right)^2\left(n^2-n+1\right)-n^2\left(n+1\right)^2\left(n-1\right)=\)

\(=n^2\left(n+1\right)^2\left[\left(n^2-n+1\right)-\left(n-1\right)\right]=\)

\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) Giả sử đây là số chính phương

\(\Rightarrow n^2-2n+2\) Phải là số chính phương

Ta có

\(n^2-2n+2=\left(n-1\right)^2+1\Rightarrow n^2-2n+2>\left(n-1\right)^2\) (1)

Ta có

\(n^2-2n+2=n^2-2\left(n-1\right)\) Với n>1

\(\Rightarrow n^2-2n+2< n^2\) (2)

Từ (1) và (2)

\(\Rightarrow\left(n-1\right)^2< n^2-2n+2< n^2\)

Mà \(\left(n-1\right)^2\) và \(n^2\) là hai số chính phương liên tiếp nên \(n^2-2n+2\) không phải là số chính phương

=> Biểu thức đề bài đã cho không phải là số chính phương

 

 

17 tháng 9 2019

dùng đồng dư đi :v 

2^2^2n=16^n

có 16 đồng dư 2 mod 7

=>16^n đồng dư 2 mod 7

=>16^n+5 đồng dư 0 mod 7

7 tháng 1 2018

\(x^2-2xy+y^2+4x-4y-5\)

\(=\left(x-y\right)^2+4\left(x-y\right)+4-9\)

\(=\left(x-y+2\right)^2-9\)

\(=\left(x-y+2+3\right)\left(x-y+2-3\right)\)

\(=\left(x-y+5\right)\left(x-y-1\right)\)

7 tháng 1 2018

a, = (x^2-2xy+y^2)+(4x-4y)-5

    = (x-y)^2+4.(x-y)-5

    = [(x-y)^2+4.(x-y)+4]-9

    = (x-y+2)^2-9

    = (x-y+2-3).(x-y+2+3)

    = (x-y-1).(x-y+5)

b, Xét : A = n^3+n+2 = (n^3+n)+2 = n.(n^2+1)+2

Nếu n chẵn => n.(n^2+1) chia hết cho 2 => A chia hết cho 2

Nếu n lẻ => n^2 lẻ => n^2+1 chẵn => n.(n^2+1) chia hết cho 2 => A chia hết cho 2

Vậy A chia hết cho 2 với mọi n thuộc N sao

Mà n thuộc N sao nên n.(n^2+1)+2 > 2

=> A là hợp số hay n^3+n+2 là hợp số

=> ĐPCM

Tk mk nha

\(A=n^3+n+2\)

\(=n\left(n^2+1\right)+2\)

TH1: n=2k

\(A=2k\left(4k^2+1\right)+2⋮2\)

TH2: n=2k+1

\(A=\left(2k+1\right)\left[\left(2k+1\right)^2+1\right]+2\)

\(=\left(2k+1\right)\left(4k^2+4k+1+1\right)+2\)

\(=2\left(2k+1\right)\left(2k^2+2k+1\right)+2⋮2\)

Để chứng minh rằng tích ab chia hết cho 6, ta cần chứng minh rằng một trong hai số a hoặc b chia hết cho 2 và một trong hai số a hoặc b chia hết cho 3.

Giả sử a chia hết cho 2, khi đó a có thể là 2, 4, 6 hoặc 8. Ta sẽ xét từng trường hợp:

  1. Nếu a = 2, thì n = 10a + b = 20 + b. Vì n > 3, nên b > 0. Khi đó, tích ab = 2b chia hết cho 2.

  2. Nếu a = 4, thì n = 10a + b = 40 + b. Vì n > 3, nên b > -37. Khi đó, tích ab = 4b chia hết cho 2.

  3. Nếu a = 6, thì n = 10a + b = 60 + b. Vì n > 3, nên b > -57. Khi đó, tích ab = 6b chia hết cho 2.

  4. Nếu a = 8, thì n = 10a + b = 80 + b. Vì n > 3, nên b > -77. Khi đó, tích ab = 8b chia hết cho 2.

Ta đã chứng minh được rằng nếu a chia hết cho 2, thì tích ab chia hết cho 2.

Tiếp theo, ta chứng minh rằng một trong hai số a hoặc b chia hết cho 3. Ta có thể sử dụng phương pháp tương tự như trên để chứng minh điều này.

Vì tích ab chia hết cho cả 2 và 3, nên tích ab chia hết cho 6.

Vậy, ta đã chứng minh được rằng nếu n = 10a + b (a, b  N, 0 < a < 10), thì tích ab chia hết cho 6.

10 tháng 12 2023

Rảnh à?

 

\(A=n^3+n+2=n\left(n^2+1\right)+2\)

Trường hợp 1: n=2k

=>\(A=2\left[k\left(n^2+1\right)+1\right]⋮2\)

Trường hợp 2: n=2k+1

\(A=\left(2k+1\right)\left(4k^2+4k+1+1\right)+2\)

\(=2\left(2k+1\right)\left(2k^2+2k+1\right)+2⋮2\)

Vậy: với mọi số nguyên dương n thì A là hợp số