K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2020

Giả sử phản chứng n ko chia hết cho 5 

=> n có dạng là 5a + 1; 5b + 2; 5c + 3; 5d + 4

TH1:   n = 5a + 1

=>   \(n^2=\left(5a+1\right)^2=25a^2+10a+1\)     ko chia hết cho 5

TH2:   n = 5b + 2

=>    \(n^2=\left(5b+2\right)^2=25b^2+20b+4\)    ko chia hết cho 5

TH3:   n = 5c + 3

=>   \(n^2=\left(5c+3\right)^2=25c^2+30c+9\)     ko chia hết cho 5

TH4:   n = 5d + 4

=>   \(n^2=\left(5d+4\right)^2=25d^2+40d+16\)  ko chia hết cho 5

VẬY QUA 4 TRƯỜNG HỢP THÌ TA THẤY ĐIỀU GIẢ SỬ LÀ SAI

=>    ĐIỀU PHẢI CHỨNG MINH:     \(n^2⋮5\Rightarrow n⋮5\)

23 tháng 8 2020

Giả sử n2 chia hết cho 5 và n không chia hết cho 5.

Nếu n=5k\(\pm\)\(\left(k\inℕ\right)\)thì \(n^2=25k^2\pm10k+1=5\left(5k^2\pm2k\right)+1⋮̸5\)

Nếu \(n=5k\pm2\left(k\inℕ\right)\)thì \(n^2=25k^2\pm20k+4=5\left(5k^2\pm4k\right)+4⋮̸5\)

Điều này mâu thuẫn với giả thiết n2 chia hết cho 5