K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

Ta có

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vế trái bằng vế phải nên đẳng thức được chứng minh.

11 tháng 5 2019

\(\left(x-y\right)^3+4y\left(2x^2+y^2\right)=\left(x+y\right)^3+2y\left(x^2+y^2\right)\)

\(\Leftrightarrow x^3-3x^2y+3xy^2-y^3+8x^2y+4y^3=x^3+3x^2y+3xy^2+y^3+2x^2y+2y^3\)

\(\Leftrightarrow\left(-3x^2y+8x^2y\right)+3xy^2+3y^3=\left(3x^2y+2x^2y\right)+3xy^2+3y^2\)

\(\Leftrightarrow5x^2y+3xy^2+3y^2=5x^2y+3xy^2+3y^2\)

15 tháng 7 2017

a) \(VT=\left(x-1\right)\left(x^2+x+1\right)\)

\(=x^3+x^2+x-x^2-x-1\)

\(=x^3-1=VP\)

b) \(VT=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4=VP\)

c) \(VT=\left(x+y+z\right)^2\)

\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)

\(=x^2+2xy+y^2+2xz+2yz+z^2\)

\(=x^2+y^2+z^2+2xy+2yz+2zx=VP\)

Chúc bạn học tốt.

20 tháng 6 2015

1)5(x^2-1)+x(1-5x)= x-2

<=>5x2-5+x-5x2=x-2

<=>-5+x=x-2

<=>x-x=-2+5

<=>0x=3(vô lí)

vậy ko tìm được x

 

 

20 tháng 6 2015

daj quá bạn đăng từng baj thuj

22 tháng 9 2019

thực hiện nhân đa thức với đa thức ở vế trái xog rút gọn là nó = vế pải

24 tháng 9 2019

1/ Biến đổi vế trái , ta có :

(x-y)(x+y)= x2+xy - xy-y2= x2-y2

=> (x-y) (x+y) =x2-y2

2/ Biến đổi vế trái , ta có :

(x-y) (x2+xy+y2)= x3+x2y+xy2-x2y-xy2-y3

= (x2y-x2y)+(xy2-xy2)+x3-y3=x3-y3

=> (x-y) (x2+xy+y2) =x3-y3

3/ / Biến đổi vế trái , ta có :

(x+y) (x2-xy+y2) =x3-x2y+xy2+x2y-xy2+y3

(-x2y+x2y) + ( xy2-xy2) + x3+y3= x3+y3

4 tháng 9 2021

a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)

b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)

\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)

\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)

 

a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

28 tháng 7 2018

30 tháng 9 2018

a)(x-y)(x^2+xy+y^2)+xy(x-y)

=(x-y)(x^2+2xy+y^2)

=(x-y)(x+y)^2

=> Đt trên Đ

b) CM tương tự nha

Câu 1:

a) Ta có: \(VT=x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\)=VP(đpcm)

c) Ta có: \(VT=a\left(b+1\right)+b\left(a+1\right)\)

\(=ab+a+ab+b\)

\(=a+b+2ab\)(1)

Thay ab=1 vào biểu thức (1), ta được:

a+b+2(*)

Ta có: VP=(a+1)(b+1)=ab+a+b+1(2)

Thay ab=1 vào biểu thức (2), ta được:

1+a+b+1=a+b+2(**)

Từ (*) và (**) ta được VT=VP(đpcm)

Câu 2:

Ta có: \(\left(x-3\right)\left(x+x^2\right)+2\left(x-5\right)\left(x+1\right)-x^3=12\)

\(\Leftrightarrow x^2+x^3-3x-3x^2+2\left(x^2+x-5x-5\right)-x^3=12\)

\(\Leftrightarrow x^3-2x^2-3x+2x^2-8x-10-x^3-12=0\)

\(\Leftrightarrow-11x-22=0\)

\(\Leftrightarrow-11x=22\)

hay x=-2

Vậy: x=-2

20 tháng 6 2018

a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)

\(=x^2+2x-5x-10+3x^2-12-3x+\dfrac{1}{2}x^2+5x^2\)

\(=\dfrac{19}{2}x^2-6x-22\)

Vậy biểu thức trên phụ thuộc vào biến x.

b) \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\)

Giải:

VT = \(\left(y-1\right)\left(y^2+y+1\right)\)

\(=y^3+y^2+y-y^2-y-1\)

\(=y^3-1\)

Vậy \(\left(y-1\right)\left(y^2+y+1\right)=y^3-1\).

20 tháng 6 2018

Giải:

a) \(N=\left(x-5\right)\left(x+2\right)+3\left(x-2\right)\left(x+2\right)-\left(3x-\dfrac{1}{2}x^2\right)+5x^2\)

\(\Leftrightarrow N=x^2-3x-10+3\left(x^2-4\right)-3x+\dfrac{1}{2}x^2+5x^2\)

\(\Leftrightarrow N=x^2-3x-10+3x^2-12x-3x+\dfrac{1}{2}x^2+5x^2\)

\(\Leftrightarrow N=-10-18x+\dfrac{19}{2}x^2\)

Vậy biểu thức trên phụ thuộc vào biễn x

b) \(\left(y-1\right)\left(y^2+y+1\right)\)

\(=y^3-y^2+y^2-y+y-1\)

\(=y^3-\left(y^2-y^2\right)-\left(y-y\right)-1\)

\(=y^3-1\)

Vậy ...

Ta có: \(\left(x-y\right)^3+4y\left(2x^2+y^2\right)\)

\(=x^3-3x^2y+3xy^2-y^3+8x^2y+4y^3\)

\(=x^3+5x^2y+3xy^2+3y^3\)

\(=x^3+3x^2y+3xy^2+y^3+2x^2y+2y^3\)

\(=\left(x+y\right)^3+2y\left(x^2+y^2\right)\)