K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

a,A=(x+1)(x+2)(x+3)(x+4)+1

=[(x+1)(x+4)][(x+2)(x+3)]+1

=(x2+5x+4)(x2+5x+6)

đặt x2+5x+5=a ta có

A=(a-1)(a+1)+1

=a2-1+1=a2

thay a =x2+5x+5 ta có A=(x2+5x+5)2

vì x nguyên nên x2+5x+5 nguyên 

vậy A là bình phương của 1 số nguyên với mọi x nguyên

b,B=x4-4x3-2x2+12x+9

=x4+x3-5x3-5x2+3x2+3x+9x+9

=x3(x+1)-5x2(x+1)+3x(x+1)+9(x+1)

=(x+1)(x3-5x2+3x+9)

=(x+1)(x3+x2-6x2-6x+9x+9)

=(x+1)[x2(x+1)-6x(x+1)+9(x+1)]

=(x+1)(x+1)(x2-6x+9)

=(x+1)2(x+3)2

vì x nguyên nên x+1 nguyên;x+3 nguyên

vậy B là bình phương củ một số nguyên với mọi x nguyên

27 tháng 10 2021

Bài 3: 

\(B=x^4-4x^3-2x^2+12x+9=\left(x^4+x^3\right)-\left(5x^3+5x^2\right)+\left(3x^2+3x\right)+\left(9x+9\right)=\left(x^3-5x^2+3x+9\right)\left(x+1\right)=\left[\left(x^3+x^2\right)-\left(6x^2+6x\right)+\left(9x+9\right)\right]\left(x+1\right)=\left(x^2-6x+9\right)\left(x+1\right)^2=\left(x-3\right)^2\left(x+1\right)^2=\left[\left(x-3\right)\left(x+1\right)\right]^2\)

27 tháng 10 2021

Bài 3: 

\(B=x^4-4x^3-2x^2+12x+9\)

\(=x^4-3x^3-x^3+3x^2-5x^2+15x-3x+9\)

\(=\left(x-3\right)\left(x^3-x^2-5x-3\right)\)

\(=\left(x-3\right)\left(x^3-3x^2+2x^2-6x+x-3\right)\)

\(=\left(x-3\right)^2\cdot\left(x+1\right)^2\)

\(=\left(x^2-2x-3\right)^2\)

8 tháng 8 2017

a) \(A=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(t=x^2+5x+5\) thì

\(A=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+5x+5\right)^2\)

\(x\in Z\) nên \(x^2+5x+5\in Z\) nên A là số chính phương.

b) \(B=x^4-4x^3-2x^2+12x+9\)

\(=\left(x^2\right)^2+4x^2+9-4x^3-6x^2+12x\)

\(=\left(x^2\right)^2+\left(2x\right)^2+3^2-2.x.x^2-2.3.x^2+2.3.2x\)

\(=\left(x^2-2x-3\right)^2\)

\(x\in Z\) nên \(x^2-2x-3\in Z\) nên B là số chính phương.

8 tháng 8 2017

Hồng Phúc Nguyễn, @Toshiro Kiyoshi, Nguyễn Thanh Hằng, Mới vô, Nguyễn Huy Tú, TFBoys, Nguyễn Phương Trâm, Hoàng Ngọc Anh, Tuấn Anh Phan Nguyễn, ...

18 tháng 2 2022

a, \(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\left(9x^2-4\right)-\left(\left(3x+2\right)\left(x-1\right)\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-\left(3x^2-x-2\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)=0;3x^2+x-2=0\)

=> x=-1  

với \(3x^2+x-2=0\)

ta sử dụng công thức bậc 2 suy ra : \(x=\dfrac{2}{3};x=-1\)

Vậy  ghiệm của pt trên \(S\in\left\{-1;\dfrac{2}{3}\right\}\)

b: \(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)

\(\Leftrightarrow3x^2=3\)

hay \(x\in\left\{1;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)

hay \(x\in\left\{1;-2;\dfrac{7}{5}\right\}\)

c) Ta có: \(C=4x^2+y^2-4xy+8x-4y+4\)

\(=\left(2x-y\right)^2+2\cdot\left(2x-y\right)\cdot2+2^2\)

\(=\left(2x-y+2\right)^2\)

8 tháng 8 2021

Cho mình xin đáp án câu a và b được không?

6 tháng 10 2021

2.a) (ko phân tích được, bạn coi lại nhé)

b) phần còn lại của chứng minh là gì thế bạn?

\(B=x^4-3x^3-x^3+3x^2-5x^2+15x-3x+9\)

\(=\left(x-3\right)\left(x^3-x^2-5x-3\right)\)

\(=\left(x-3\right)\left(x^3-3x^2+2x^2-6x+x-3\right)\)

\(=\left(x-3\right)^2\left(x^2+2x+1\right)\)

\(=\left(x-3\right)^2\cdot\left(x+1\right)^2\) là bình phương của một số nguyên(đpcm)

NV
26 tháng 7 2021

1. Đề bài sai, các biểu thức này chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất

2.

\(A=\left(2x\right)^3-3^3-\left(8x^3+2\right)\)

\(=8x^3-27-8x^3-2\)

\(=-29\) 

\(B=x^3+9x^2+27x+27-\left(x^3+9x^2+27x+243\right)\)

\(=27-243=-216\)

26 tháng 7 2021

 sửa đề lại thành tìm Max nhé1, vì mấy ý này ko có min

\(1,=>D=-\left(x^2-4x-3\right)=-\left(x^2-2.2x+4-7\right)\)

\(=-[\left(x-2\right)^2-7]=-\left(x-2\right)^2+7\le7\)

dấu"=" xảy ra<=>x=2

2, \(E=-2\left(x^2-x+\dfrac{5}{2}\right)=-2[x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{9}{4}]\)

\(=-2[\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}]\le-\dfrac{9}{2}\) dấu"=" xảy ra<=>x=1/2

3, \(F=-\left(x^2+4x-20\right)=-\left(x^2+2.2x+4-24\right)\)

\(=-[\left(x+2\right)^2-24]\le24\) dấu"=" xảy ra<=>x=-2

5 tháng 3 2020

Ta có \(M=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(\Leftrightarrow M=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(t=x^2+5x+5\)Khi đó

\(M=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+5x+5\right)^2\)

Vì x nguyên nên \(x^2+5x+5\)nguyên \(\Rightarrow\left(x^2+5x+5\right)^2\)là bình phương của 1 số nguyên (đccm)

Hok tốt!!

5 tháng 3 2020

a,M=(x+1)(x+2)(x+3)(x+4)+1

=[(x+1)(x+4)][(x+2)(x+3)]+1

=(x2+5x+4)(x2+5x+6)

đặt x2+5x+5=a ta có

M=(a-1)(a+1)+1

=a2-1+1=a

thay a =x2+5x+5 ta có A=(x2+5x+5)

  vậy M là bình phương của 1 số nguyên với mọi x nguyên

vì x nguyên nên x2+5x+5 nguyên