K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

a) \(A=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(t=x^2+5x+5\) thì

\(A=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+5x+5\right)^2\)

\(x\in Z\) nên \(x^2+5x+5\in Z\) nên A là số chính phương.

b) \(B=x^4-4x^3-2x^2+12x+9\)

\(=\left(x^2\right)^2+4x^2+9-4x^3-6x^2+12x\)

\(=\left(x^2\right)^2+\left(2x\right)^2+3^2-2.x.x^2-2.3.x^2+2.3.2x\)

\(=\left(x^2-2x-3\right)^2\)

\(x\in Z\) nên \(x^2-2x-3\in Z\) nên B là số chính phương.

8 tháng 8 2017

Hồng Phúc Nguyễn, @Toshiro Kiyoshi, Nguyễn Thanh Hằng, Mới vô, Nguyễn Huy Tú, TFBoys, Nguyễn Phương Trâm, Hoàng Ngọc Anh, Tuấn Anh Phan Nguyễn, ...

8 tháng 8 2017

a,A=(x+1)(x+2)(x+3)(x+4)+1

=[(x+1)(x+4)][(x+2)(x+3)]+1

=(x2+5x+4)(x2+5x+6)

đặt x2+5x+5=a ta có

A=(a-1)(a+1)+1

=a2-1+1=a2

thay a =x2+5x+5 ta có A=(x2+5x+5)2

vì x nguyên nên x2+5x+5 nguyên 

vậy A là bình phương của 1 số nguyên với mọi x nguyên

b,B=x4-4x3-2x2+12x+9

=x4+x3-5x3-5x2+3x2+3x+9x+9

=x3(x+1)-5x2(x+1)+3x(x+1)+9(x+1)

=(x+1)(x3-5x2+3x+9)

=(x+1)(x3+x2-6x2-6x+9x+9)

=(x+1)[x2(x+1)-6x(x+1)+9(x+1)]

=(x+1)(x+1)(x2-6x+9)

=(x+1)2(x+3)2

vì x nguyên nên x+1 nguyên;x+3 nguyên

vậy B là bình phương củ một số nguyên với mọi x nguyên

27 tháng 10 2021

Bài 3: 

\(B=x^4-4x^3-2x^2+12x+9=\left(x^4+x^3\right)-\left(5x^3+5x^2\right)+\left(3x^2+3x\right)+\left(9x+9\right)=\left(x^3-5x^2+3x+9\right)\left(x+1\right)=\left[\left(x^3+x^2\right)-\left(6x^2+6x\right)+\left(9x+9\right)\right]\left(x+1\right)=\left(x^2-6x+9\right)\left(x+1\right)^2=\left(x-3\right)^2\left(x+1\right)^2=\left[\left(x-3\right)\left(x+1\right)\right]^2\)

27 tháng 10 2021

Bài 3: 

\(B=x^4-4x^3-2x^2+12x+9\)

\(=x^4-3x^3-x^3+3x^2-5x^2+15x-3x+9\)

\(=\left(x-3\right)\left(x^3-x^2-5x-3\right)\)

\(=\left(x-3\right)\left(x^3-3x^2+2x^2-6x+x-3\right)\)

\(=\left(x-3\right)^2\cdot\left(x+1\right)^2\)

\(=\left(x^2-2x-3\right)^2\)

18 tháng 2 2022

a, \(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\left(9x^2-4\right)-\left(\left(3x+2\right)\left(x-1\right)\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-\left(3x^2-x-2\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)=0;3x^2+x-2=0\)

=> x=-1  

với \(3x^2+x-2=0\)

ta sử dụng công thức bậc 2 suy ra : \(x=\dfrac{2}{3};x=-1\)

Vậy  ghiệm của pt trên \(S\in\left\{-1;\dfrac{2}{3}\right\}\)

b: \(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)

\(\Leftrightarrow3x^2=3\)

hay \(x\in\left\{1;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)

hay \(x\in\left\{1;-2;\dfrac{7}{5}\right\}\)

\(B=x^4-3x^3-x^3+3x^2-5x^2+15x-3x+9\)

\(=\left(x-3\right)\left(x^3-x^2-5x-3\right)\)

\(=\left(x-3\right)\left(x^3-3x^2+2x^2-6x+x-3\right)\)

\(=\left(x-3\right)^2\left(x^2+2x+1\right)\)

\(=\left(x-3\right)^2\cdot\left(x+1\right)^2\) là bình phương của một số nguyên(đpcm)

5 tháng 3 2020

Ta có \(M=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(\Leftrightarrow M=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(t=x^2+5x+5\)Khi đó

\(M=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+5x+5\right)^2\)

Vì x nguyên nên \(x^2+5x+5\)nguyên \(\Rightarrow\left(x^2+5x+5\right)^2\)là bình phương của 1 số nguyên (đccm)

Hok tốt!!

5 tháng 3 2020

a,M=(x+1)(x+2)(x+3)(x+4)+1

=[(x+1)(x+4)][(x+2)(x+3)]+1

=(x2+5x+4)(x2+5x+6)

đặt x2+5x+5=a ta có

M=(a-1)(a+1)+1

=a2-1+1=a

thay a =x2+5x+5 ta có A=(x2+5x+5)

  vậy M là bình phương của 1 số nguyên với mọi x nguyên

vì x nguyên nên x2+5x+5 nguyên 

Câu 1 : thực hiện phép tính saua,(x-3)(x^2+3x+9)-(x^3+3)                b,(5x^2-10x):5x+(5x+2)^2:(5x+2)c5x/3+5x+3/5x+3Câu 2: cho biểu thức p=2a^2/a^2-1+a/a+1-a/a-1a, tìm a để biểu thức p có nghĩa .Rút gọn pb,tính giá trị biểu thức p tại x=2017;x=1c,tìm các giá trị nguyên của x để  p nhận giá trị nguyênCâu 3 cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD .gọi Mvà N theo thứ tự là trung điểm...
Đọc tiếp

Câu 1 : thực hiện phép tính sau

a,(x-3)(x^2+3x+9)-(x^3+3)                b,(5x^2-10x):5x+(5x+2)^2:(5x+2)

c5x/3+5x+3/5x+3

Câu 2: cho biểu thức p=2a^2/a^2-1+a/a+1-a/a-1

a, tìm a để biểu thức p có nghĩa .Rút gọn p

b,tính giá trị biểu thức p tại x=2017;x=1

c,tìm các giá trị nguyên của x để  p nhận giá trị nguyên

Câu 3 cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD .gọi Mvà N theo thứ tự là trung điểm của các đoạn AH và DH

a, chứng minh MN song song với AD 

b,gọi I là trung điểm của cạnh BC .Chứng minh tứ giác BMNI là hình bình hành

c, chứng minh tam giác ANI tại N

Câu 4; a , tìm X biết :(X^4+2X^3+10X-25):(x^2+5)=3

b<chứng minh rằng với mọi X thuộc Q thì giá trị của đa thức 

M=(X+2)(x+4)(x+6)(x+8)+16 là bình phương của một số hữu tỉ

 

0
AH
Akai Haruma
Giáo viên
14 tháng 7

1.

\(A=\frac{x^2-x+2}{x-2}=\frac{x(x-2)+(x-2)+4}{x-2}=x+1+\frac{4}{x-2}\)

Với $x$ nguyên, để $A$ nguyên thì $\frac{4}{x-2}$ nguyên.

Điều này xảy ra khi $4\vdots x-2$

$\Rightarrow x-2\in \left\{\pm 1; \pm 2; \pm 4\right\}$

$\Rightarrow x\in \left\{3; 1; 0; 4; 6; -2\right\}$

AH
Akai Haruma
Giáo viên
14 tháng 7

2.

\(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{(2x-1)^3}{(2x-1)^2}=2x-1\)

Với $x$ nguyên thì $P=2x-1$ nguyên.

$\Rightarrow P$ nguyên với mọi giá trị $x$ nguyên.

25 tháng 8 2020

1. \(M=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1\)

\(=\left[\left(a+1\right)\left(a+4\right)\right]\left[\left(a+2\right)\left(a+3\right)\right]+1\)

\(=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)

\(=\left(a^2+5a+4\right)^2+2\left(a^2+5a+4\right)+1\)

\(=\left(a^2+5a+5\right)^2\) 

=> Đpcm

25 tháng 8 2020

M = ( a + 1 )( a + 2 )( a + 3 )( a + 4 ) + 1

    = [ ( a + 1 )( a + 4 ) ][ ( a + 2 )( a + 3 ) ] + 1

    = [ a2 + 5a + 4 ][ a2 + 5a + 6 ] + 1

Đặt t = a2 + 5a + 4

M <=> t[ t + 2 ] + 1

      = t2 + 2t + 1

      = ( t + 1 )2

      = ( a2 + 5a + 4 + 1 )2 = ( a2 + 5a + 5 )2 ( đpcm )

( x2 + x + 1 )( x2 + x + 2 ) - 12 (*)

Đặt t = x2 + x + 1

(*) <=> t( t + 1 ) - 12

       = t2 + t - 12

       = t2 - 3t + 4t - 12

       = t( t - 3 ) + 4( t - 3 )

       = ( t - 3 )( t + 4 )

       = ( x2 + x + 1 - 3 )( x2 + x + 1 + 4 )

       = ( x2 + x - 2 )( x2 + x + 5 )

       = ( x2 + 2x - x - 2 )( x2 + x + 5 )

       = [ x( x + 2 ) - 1( x + 2 ) ]( x2 + x + 5 )

       = ( x + 2 )( x - 1 )( x2 + x + 5 )