K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2015

47102 có tận cùng là 9

51n có tận cùng là 1

=> 47102 + 51n tận cùng là 0 

=> chia hết cho 10 

6 tháng 10 2016

Bạn giải rõ ra đi

9 tháng 10 2015

Ta có :

47102 = 474.25 . 272 = (..1) . (...9) = (...9)

Do đó 51 + 47102 = (...1) + (...9) = (...0) có chữ số tận cùng là 0

Vậy A chia hết cho 10

 

3 tháng 11 2019

\(51^n+47^{102}\)

\(=\overline{.....1}+\overline{.....9}\)

\(=\overline{.....0}⋮10\)

\(17^5+24^4-13^{21}\)

\(=\overline{....7}+\overline{...6}-\overline{.....3}\)

\(=\overline{.....0}⋮10\)

1 tháng 12 2017

47102 có chữ số tân cùng là 9

51n có tận cùng là 1

=> 51n + 47102 có chữ số tận cùng là 0

=>A chia hết cho 10

10 tháng 10 2016

Ta có:

\(51^n\equiv1\left(mod10\right)\)

\(47^2\equiv-1\left(mod10\right)\)

\(\Rightarrow47^{102}\equiv-1\left(mod10\right)\)

\(\Rightarrow A=51^n+47^{102}\equiv1+\left(-1\right)\left(mod10\right)\)

\(\Rightarrow A=51^n+47^{102}⋮10\left(đpcm\right)\)

10 tháng 10 2016

mod10 và đpcm là gì vậy bạn ?

21 tháng 10 2016

ta có 47102 thì ta so sánh chữ số cuối thì  thành 72 thì sẽ có tận cùng là 9 (72 =49)

mà 51n bao giờ cũng có tận cùng là 1

=>......1+........9= ......10 chia hết cho 10

24 tháng 10 2017

Ta có :

\(51^n\equiv1\left(mod10\right)\)

\(47^2\equiv-1\left(mod10\right)\)

\(\Rightarrow47^{102}\equiv-1\left(mod10\right)\)

\(\Rightarrow A=51^n+47^{102}\equiv1+\left(-1\right)\left(mod10\right)\)

\(\Rightarrow A=51^n+47^{102}⋮10\left(đpcm\right)\)

16 tháng 7 2016

Ta có:

51n + 47102

= (...1) + 47100 . 472

= (...1) + (474)25 . (...9)

= (...1) + (...1)25 . (...9)

= (...1) + (...1) . (...9)

= (...1) + (...9)

= (...0) chia hết cho 10

=> đocm

16 tháng 7 2016

\(^{51^n}\)luôn luôn có tận cùng bằng 1 (\(51^n\)=....1)
\(47^{102}\)=\(\left(47^4\right)^{25}\cdot47^2\)=......1 *....9=....9
=> \(51^n+47^{102}=.....1+.....9=.....0\)chia hết cho 10

17 tháng 12 2016

Ta có:

\(A=51^n+47^{102}\)

\(\Rightarrow A=\overline{...1}+47^{100}.47^2\)

\(\Rightarrow A=\overline{...1}+\left(47^4\right)^{25}.\left(\overline{...9}\right)\)

\(\Rightarrow A=\overline{...1}+\left(\overline{...1}\right)^{25}.\left(\overline{...9}\right)\)

\(\Rightarrow A=\overline{...1}+\left(\overline{...1}\right).\left(\overline{...9}\right)\)

\(\Rightarrow A=\overline{...1}+\overline{...9}\)

\(\Rightarrow A=\overline{...0}\)

\(\overline{....0}\text{⋮}10\) nên \(A\text{⋮}10\)

Vậy \(A\text{⋮}10\left(đpcm\right)\)