K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

a, Ta có: \(4\equiv1\left(mod3\right)\)

\(\Rightarrow4^{2018}\equiv1\left(mod3\right)\)

\(\Rightarrow4^{2018}-1⋮3\)

b, Ta có: \(5\equiv1\left(mod4\right)\)

\(\Rightarrow5^{2019}\equiv1\left(mod4\right)\)

\(\Rightarrow5^{2019}-1⋮4\)

c, \(4\equiv-1\left(mod5\right)\)

\(\Rightarrow4^{2019}\equiv-1\left(mod5\right)\)

\(\Rightarrow4^{2019}+1⋮5\)

d, \(5\equiv-1\left(mod6\right)\)

\(\Rightarrow5^{2017}\equiv-1\left(mod6\right)\)

\(\Rightarrow5^{2017}+1⋮6\)

19 tháng 8 2017

1. Vì \(4\) chia \(3\)\(1\)

\(\Rightarrow4^{2018}\) chia \(3\)\(1^{2018}=1.\)

\(\Rightarrow4^{2018}-1\) chia hết cho \(3.\)