Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(3^{15}+3^{16}+3^{17}\)
\(=3^{15}\cdot\left(1+3+3^2\right)=3^{15}\cdot13⋮13\)
\(\rightarrow3^{15}+3^{16}+3^{17}⋮13\left(đpcm\right)\)
Ta có : \(3^{15}+3^{16}+3^{17}\)
\(=3^{15}\cdot\left(1+3+3^2\right)=3^{15}\cdot13⋮13\)
\(\Rightarrow3^{15}+3^{16}+3^{17}⋮13\)(đpcm)
\(x^3-x^2-2x^2+2x\)
\(=x^2\left(x-1\right)-2x\left(x-1\right)\)
\(=\left(x^2-2x\right)\left(x-1\right)\)
\(=\left(x-1\right)\left(x-2\right)x\)
Vì đây là tích 3 số tự nhiên liên tiếp nên sẽ chia hết cho 6
B = (n^2 - 2n + 1)^3
= [(n-1)^2]^3
= (n-1)^6 ⋮ (n - 1)^2
đpcm
\(B=\left(n^2-2n+1\right)^3=\left[\left(n-1\right)^2\right]^3=\left(n-1\right)^6\)
\(B\div\left(n-1\right)^2=\left(n-1\right)^6\div\left(n-1\right)^2=\left(n-1\right)^4\)
=> Đpcm
17n+2 - 17n
= 17n( 172 - 1 )
= 17n( 289 - 1 )
= 17n.288
= 17n.12.24 chia hết cho 12 ( đpcm )
a: \(a^3-a=a\left(a-1\right)\left(a+1\right)\)
Vì a;a-1;a+1 là ba số nguyên liên tiếp
nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)
hay \(a^3-a⋮6\)
Bài 2:
a: \(\Leftrightarrow\left(x-5\right)\left(x+5\right)-\left(x+5\right)=0\)
=>(x+5)(x-6)=0
=>x=-5 hoặc x=6
b: \(\Leftrightarrow4x^2-4x+1-4x^2+1=0\)
=>-4x+2=0
hay x=1/2
c: \(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)
=>x=1 hoặc x=-1