Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do IJ là đường thẳng trung bình của hình thang ABCD nên IJ // AB. Hai mặt phẳng (GIJ) và (SAB) lần lượt chứa hai đường thẳng song song nên giao tuyến của chúng là đường thẳng đi qua G và song song với AB. Đường thẳng này cắt SA tại điểm M và cắt SB tại N. vậy thiết diện là hình thang MIJN, với M, N là giao điểm của đường thẳng đi qua G và song song với AB với hai đường thẳng SA, SB.
Đáp án B.
a) Dễ thấy S là một điểm chung của hai mặt phẳng (SAD) và (SBC).
Ta có:
⇒ (SAD) ∩ (SBC) = Sx
Và Sx // AD // BC.
b) Ta có: MN // IA // CD
Mà
(G là trọng tâm của ∆SAB) nên
⇒ GN // SC
SC ⊂ (SCD) ⇒ GN // (SCD)
c) Giả sử IM cắt CD tại K ⇒ SK ⊂ (SCD)
MN // CD ⇒
Ta có:
Ko chắc sẽ đúng
a)* Trên mp ABCD kéo dài MN và AB sao cho MN cắt AB = { I }
Xét mp (SMN) và (SAB) có:
S là điểm chung (1)
I là điểm chung (2)
=> (SMN) n (SAB) = { SI }
* Vì I thuộc mp ABCD (cmt)
G là trọng tâm tam giác SAB
Xét mp (GMN) và (SAB) có:
G và I là điểm chung
=> (GMN) n (SAB) = {GI}
Qua G kẻ đường thẳng d song song với AB.
\(H=d\cap SB;K=d\cap SA\)
Kẻ KP//AD, HT//BC \(\left(P\in SD;T\in SC\right)\)
\(\Rightarrow KHTP\) là thiết diện cần tìm.
\(\dfrac{HK}{AB}=\dfrac{HT}{BC}=\dfrac{KP}{AD}=\dfrac{PT}{CD}=\dfrac{2}{3}\)
Mà \(AB=BC=CD=DA\Rightarrow KH=HT=TP=PK\)
\(\Rightarrow KHPT\) là hình vuông.
Theo câu 27, ta có MN // AB // IJ và thiết diện của mặt phẳng (GIJ) với hình chóp là tứ giác MNJI.
Ta có MN đi qua trọng tâm G cảu tam giác SAB và song song với AB nên M N A B = 2 3 = > M N = 2 3 A B
IJ là đường trung bình của hình thangABCD nên: IJ = 1 2 ( A B + C D )
Do IJ // MN nên thiết diện là hình bình hành khi và chỉ khi IJ = MN
= > 2 3 A B = 1 2 ( A B + C D )
⇒AB = 3CD
Đáp án B