Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé
a) Xét tam giác Abc có
PN // BC ,PN = 1/2 BC (PN là dường trung bình)
mà PN trùng PF hay NF
Suy ra BC // NF
Mà BN // CF
Trong tứ giác BNFC có :
BC là cạnh đối của NF
BN là cạnh đối của CF
Suy ra tứ giác BNFC là hình bình hành (có các cạnh đối song song)
b)Ta có : PN = 1/2 BC (cm a)
mà NF = BC (hai cạnh đối của hình bình hành BNFC)
Suy ra PN = 1/2NF hay PN = NE = EF
Suy ra PN + NE = NE + EF hay PE = NF
Suy ra BC = PE
Xét tứ giác PECB có
hai cạnh đối BC = PE (cmt)
Mà BC // PN hay BC // PE
Suy ra tứ giác PECB là hình bình hành (hai cạnh đối bằng nhau và song song)
Suy ra EC // PB và EC = PB (hai cạnh đối)
Vì P là trung điểm của AB nên AP = PB và AP trùng PB
Suy ra EC // AP và EC = AP
Vậy tứ giác PAEC là hình bình hành
a, + △ABC△ABC vuông ở A nên theo định lí Pytago ta có: AB2+AC2=BC2AB2+AC2=BC2
Hay: 52+AC2=132⟹AC=1252+AC2=132⟹AC=12
+ E là trung điểm của AB nên AE=EB=AB2=52=2,5AE=EB=AB2=52=2,5
+ N là trung điểm của AC nên AN=CN=AC2=122=6AN=CN=AC2=122=6
+ △AEC△AEC vuông ở A nên theo định lí Pytago ta có: EC2=AE2+AC2=2,52+122=150,25⟹EC≈12.3EC2=AE2+AC2=2,52+122=150,25⟹EC≈12.3
+ △ANB△ANB vuông ở A nên theo định lí Pytago ta có: NB2=AB2+AN2=62+52=61⟹BN≈7,8NB2=AB2+AN2=62+52=61⟹BN≈7,8
+ Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên AM=BC2=6,5AM=BC2=6,5
a: Xét ΔABC vuông tại A và ΔDBE vuông tại D có
góc B chung
=>ΔABC đồng dạng với ΔDBE
=>AB/DB=AC/DE
=>AB*DE=AC*BD
b: BC=căn 18^2+24^2=30cm
BD=CD=30/2=15cm
ΔABC đồng dạng với ΔDBE
=>AB/DB=BC/BE=AC/DE
=>24/DE=30/BE=18/15=6/5
=>DE=20cm; BE=25cm
c: Xét ΔMAE vuông tại A và ΔMDC vuông tại D có
góc AME=góc DMC
=>ΔMAE đồng dạng với ΔMDC
=>MA/MD=ME/MC
=>MA*MC=MD*ME
d: MA/MD=ME/MC
=>MA/ME=MD/MC
=>ΔMAD đồng dạng với ΔMEC
Lời giải:
Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{18^2+24^2}=30$ (cm)
$AM=\frac{BC}{2}=30:2=15$ (cm) (tính chất đường trung tuyến ứng với cạnh huyền thì bằng 1 nửa cạnh huyền)
$GM=\frac{1}{3}AM=\frac{1}{3}.15=5$ (cm)
$GA=\frac{2}{3}AM=\frac{2}{3}.15=10$ (cm)
Hình vẽ: