Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng tính chất đường phân giác của tam giác ta có:
\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{18}=\frac{2}{3}\)
\(\Rightarrow\frac{BD}{2}=\frac{DC}{3}=\frac{BD+DC}{2+3}=\frac{BC}{5}\Rightarrow\frac{BD}{BC}=\frac{2}{5}\)
Kẻ \(DK//BE\left(K\in AC\right)\text{ ta có:}\)
\(\frac{AE}{EK}=\frac{AI}{ID}=2;\frac{EK}{EC}=\frac{BD}{BC}=\frac{2}{5}\)
Do đó:\(\frac{AE}{EK}\cdot\frac{EK}{EC}=\frac{AE}{EC}=\frac{2}{5}.2=\frac{4}{5}\)
b)\(\text{Ta có:}\)
\(\frac{AE}{EC}=\frac{4}{5}\Rightarrow\frac{AE}{4}=\frac{EC}{5}=\frac{AE+EC}{4+5}=\frac{AC}{9}=\frac{18}{9}=2\)
\(\Rightarrow AE=8cm,EC=10cm\)
bn ơi bài 1 ý a) chỉ có thể tính tỉ lệ thôi ko tính đc ra số hẳn đâu
1: \(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)
2: Xét ΔABC vuông tại A và ΔIEC vuông tại I có
góc C chung
=>ΔABC đồng dạng với ΔIEC
b:
IC=BC/2=15cm
ΔABC đồng dạng với ΔIEC
=>AB/IE=BC/EC=AC/IC
=>18/IE=30/EC=24/15=8/5
=>IE=11,25cm; EC=18,75cm
1: \(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)
2: Xét ΔABC vuông tại A và ΔIEC vuông tại I có
góc C chung
=>ΔABC đồng dạng với ΔIEC
b:
IC=BC/2=15cm
ΔABC đồng dạng với ΔIEC
=>AB/IE=BC/EC=AC/IC
=>18/IE=30/EC=24/15=8/5
=>IE=11,25cm; EC=18,75cm
a) -△DBE và △ACE có: \(\widehat{BDE}=\widehat{CAE};\widehat{BEC}\) là góc chung.
\(\Rightarrow\)△DBE∼△ACE (g-g).
b) △DBE∼△ACE \(\Rightarrow\dfrac{EB}{EC}=\dfrac{ED}{EA}\Rightarrow\dfrac{EB}{ED}=\dfrac{EC}{EA}\)
-△EAD và △ECB có: \(\dfrac{EB}{ED}=\dfrac{EC}{EA};\widehat{BEC}\) là góc chung.
\(\Rightarrow\)△EAD∼△ECB (c-g-c) nên \(\widehat{EAD}=\widehat{ECB}\)
c) EM cắt BC tại F.
-△BCE có: 2 đường cao BD và CA cắt nhau tại M.
\(\Rightarrow\)M là trực tâm của △BCE.
\(\Rightarrow\)EM⊥BC tại F.
-△BMF và △BCD có: \(\widehat{DBC}\) là góc chung, \(\widehat{BFM}=\widehat{BDC}=90^0\).
\(\Rightarrow\)△BMF∼△BCD (g-g).
\(\Rightarrow\dfrac{BM}{BC}=\dfrac{BF}{BD}\Rightarrow BM.BD=BC.BF\left(1\right)\)
-△CMF và △CBA có: \(\widehat{CFM}=\widehat{CAB}=90^0,\widehat{CBA}\) là góc chung.
\(\Rightarrow\)△CMF∼△CBA (g-g).
\(\Rightarrow\dfrac{CM}{CB}=\dfrac{CF}{CA}\Rightarrow CM.CA=CB.CF\left(2\right)\)
-Từ (1) và (2) suy ra:
\(BM.BD+CM.CA=BC.BF+CB.CF=BC\left(BF+CF\right)=BC.BC=BC^2\)
không đổi.
a) tam giác BAC vuông tại A và tam giác BMN vuong tại M có: góc BAC=góc BMN
=> tam giác BAC đồng dạng tam giác BMN (g-g)
=> BA/BM=BC/BN=> BN=BM.BC/BA=18.20/12=30cm
b) tam giác PAN vuong tại A và tam giác PMC vuong tại M có
góc APN=góc MPC (đối đỉnh)
=> tam giác PAN đồng dạng tam giác PMC (g-g)
=> PA/PM=PN/PC
=> PA.PC=PM.PN (đpcm)
c) xét tam giác BNC có MN và AC là hai đường cao cắt nhau tại P
=> BP là đường cao thứ 3 kẻ từ B
=> BP vuong góc NC (đpcm)
a) Xét ΔABD vuông tại A và ΔECD vuông tại E có
\(\widehat{ADB}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔABD\(\sim\)ΔECD(g-g)
b) Xét ΔABF có
K là trung điểm của AF(gt)
M là trung điểm của AB(gt)
Do đó: KM là đường trung bình của ΔABF(Định nghĩa đường trung bình của tam giác)
Suy ra: KM//BF(Định lí 2 về đường trung bình của tam giác)
mà BF\(\perp\)BC(gt)
nên KM\(\perp\)BC
Xét ΔCKB có
KM là đường cao ứng với cạnh BC(cmt)
BA là đường cao ứng với cạnh CK(gt)
KM cắt BA tại M(gt)
Do đó: M là trực tâm của ΔCKB(Tính chất ba đường cao của tam giác)
Suy ra: BK\(\perp\)CM
hay BK\(\perp\)OC(Đpcm)
a: Xét ΔABC vuông tại A và ΔDBE vuông tại D có
góc B chung
=>ΔABC đồng dạng với ΔDBE
=>AB/DB=AC/DE
=>AB*DE=AC*BD
b: BC=căn 18^2+24^2=30cm
BD=CD=30/2=15cm
ΔABC đồng dạng với ΔDBE
=>AB/DB=BC/BE=AC/DE
=>24/DE=30/BE=18/15=6/5
=>DE=20cm; BE=25cm
c: Xét ΔMAE vuông tại A và ΔMDC vuông tại D có
góc AME=góc DMC
=>ΔMAE đồng dạng với ΔMDC
=>MA/MD=ME/MC
=>MA*MC=MD*ME
d: MA/MD=ME/MC
=>MA/ME=MD/MC
=>ΔMAD đồng dạng với ΔMEC