K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

\(x+y+z=0\\ \Leftrightarrow\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\\ M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\\ =\left(-z\right).\left(-x\right).\left(-y\right)\\ =-\left(xyz\right)=-1.\left(2\right)=-2\)

Ta có :

\(x+y+z=0\Rightarrow\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

Thay vào biểu thức \(M\) ta được :

\(M=\left(-z\right).\left(-x\right).\left(-y\right)=-\left(zxy\right)=-2\)

( Do \(xyz=2\) )

Vậy : \(M=-2\)

x^2+1>=1

=>(x^2+1)^2>=1

y^2+2>=2

=>(y^2+2)^4>=16

=>(x^2+1)^2+(y^2+2)^4>=17

=>(x^2+1)^2+(y^2+2)^4-2>=15

Dấu = xảy ra khi x=y=0

15 tháng 7 2019

Từ x + y + z = 0 ⇒ x + y = -z; y + z = -x; x + z = -y thay vào M ta được

M = (x + y)(y + z)(x + z) = (-z).(-x).(-y) = -xyz mà xyz = 4 nên M = -4

Vậy xyz = 4 và x + y + z = 0 thì M = -4

Chọn đáp án C

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Lời giải:

$2x=3y\Leftrightarrow \frac{x}{3}=\frac{y}{2}\Leftrightarrow \frac{x}{6}=\frac{y}{4}$

$5y=4z\Leftrightarrow \frac{y}{4}=\frac{z}{5}$

Vậy:

$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}$

$\Rightarrow (\frac{x}{6})^3=(\frac{y}{4})^3=(\frac{z}{5})^3=\frac{xyz}{6.4.5}=\frac{120}{120}=1$

$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}=1$

$\Rightarrow x=6; y=4; z=5$

16 tháng 7 2021

Em cảm ơn cô ạ!

25 tháng 4 2018

\(x+y+z=0\Leftrightarrow\left\{{}\begin{matrix}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(x+y\right)\end{matrix}\right.\)

Nhân theo vế: \(xyz=-\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

\(\Rightarrow2=-\left(x+y\right)\left(y+z\right)\left(x+z\right)\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=-2\)

25 tháng 4 2018

Ta có x + y + z = 0

=> x + y = -z

y + z = -x

x + z = -y

=> M = (x + y)(y + z)(x + z) = (-z)(-x)(-y) = -2

3 tháng 5 2018

Ta có \(x+y+z=0\)

=> \(\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)(1)

và \(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)(2)

Thế (1) vào (2), ta có:

\(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

=> \(M=\left(-z\right)\left(-x\right)\left(-y\right)\)

=> \(M=xyz=-3\)

Vậy giá trị M là -3.