Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$\Rightarrow \frac{x}{21}=\frac{y}{14}$
$5y=7z\Rightarrow \frac{y}{7}=\frac{z}{5}\Rightarrow \frac{y}{14}=\frac{z}{10}$
Vậy:
$\frac{x}{21}=\frac{y}{14}=\frac{z}{10}$
$=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2$
$\Rightarrow x=21.2=42; y=14.2=28; z=10.2=20$
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x+1}{2}=\frac{y+3}{4}\)\(=\frac{z+5}{6}\)\(=\frac{2.\left(x+1\right)+3.\left(y+3\right)+4.\left(z+5\right)}{2.2+3.4+4.6}\)
\(=\frac{2x+2+3y+9+4z+20}{4+12+24}\)\(=\frac{\left(2x+3y+4z\right)+\left(2+9+20\right)}{40}\)
\(=\frac{9+31}{40}=\frac{40}{40}=1\)
Cứ thế là tìm x+1 rồi tìm x
y+3 y
x+5 z
Bạn hãy tham khảo link dưới đây :
Link : Tìm x,y và z biết : 4x - 3z = 6y-z = z và 2x+3y+4z=19- Trường Toán Trực tuyến Pitago – Giải pháp giúp em học toán vững vàng!
Chúc bạn học tốt !!!
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2 *x *x - x*y- 3 *y = 3*x
2 *x*x-(x-3)*y=3*x
em hết biết giải rồi chị ơi vì em học lớp 5
a) x/3 = y/2 = z/5 = 2y/4 = 2y- z/4-5 = -3/-1 = 3
x/3 = 3 suy ra x=9 ; y/2 = 3 suy ra y=6 ; z/5 = 3 suy ra z=15
Vậy x=3 ; y=6 ; z=15
b) x/2 = y/2 suy ra x/6 = y/15 (nhân vs 3) ; y/3 = z/7 suy ra y/15 = z/35 (nhân vs 5) . Suy ra x/6 = y/15 = z/35
x/6 = y/15 = z/35 = 2x/12 = 3y/45 = 2x+ 3y- z/ 12+ 45- 35 = 22/22 =1
x/6 = 1 suy ra x=6 ; y/15 = 1 suy ra y=15 ; z/35 = 1 suy ra =35
Vậy x=6 ; y=15 ; z= 35
a, \(3x=5y=7z=>\dfrac{3x}{105}=\dfrac{5y}{105}=\dfrac{7z}{105}=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}\)
áp dụng tính chất dãy tỉ số = nhau
\(=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y+z}{35+21+15}=\dfrac{10}{71}\)
\(=>\dfrac{x}{35}=\dfrac{10}{71}=>x=\dfrac{350}{71}\)
\(=>\dfrac{y}{21}=\dfrac{10}{71}=>y=\dfrac{210}{71}\)
\(=>\dfrac{z}{15}=\dfrac{10}{71}=>z=\dfrac{150}{71}\)
b, \(\)\(6x=5y=>\dfrac{x}{5}=\dfrac{y}{6}=>\dfrac{x}{20}=\dfrac{y}{24}\)
có \(7y=8z=>\dfrac{y}{8}=\dfrac{z}{7}=>\dfrac{y}{24}=\dfrac{z}{21}\)
\(=>\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}\)
áp dụng t/c dãy tỉ số = nhau
\(=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}=\dfrac{3x+2y+4z}{60+48+84}=\dfrac{12}{192}=\dfrac{1}{16}\)
\(=>\dfrac{3x}{60}=\dfrac{1}{16}=>x=1,25\)
\(=>\dfrac{2y}{48}=\dfrac{1}{16}=>y=1,5\)
\(=>\dfrac{4z}{84}=\dfrac{1}{16}=>z=1,3125\)
c, \(x:y:z=1:2:3=>\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)
\(=>x=\dfrac{y}{2},z=\dfrac{3y}{2}\)
thay x,z vào \(x^3+y^3+z^3=36=>\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)
\(=>y=2\)
\(=>x=\dfrac{y}{2}=\dfrac{2}{2}=1,z=\dfrac{3y}{2}=\dfrac{3.2}{2}=3\)
d, \(\dfrac{x}{2}=\dfrac{y}{3}=>x=\dfrac{2y}{3}\)
thay x vào \(3x^3+y^3=51=>3.\left(\dfrac{2y}{3}\right)^3+y^3=51=>y=3\)
\(=>x=\dfrac{2.3}{3}=2\)
c, từ đoạn này á
\(\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)
\(< =>\dfrac{y^3}{8}+\dfrac{8y^3}{8}+\dfrac{27y^3}{8}=36\)
\(=>\dfrac{36y^3}{8}=36=>36y^3=8.36=>y^3=8=>y=2\)
Lời giải:
$2x=3y\Leftrightarrow \frac{x}{3}=\frac{y}{2}\Leftrightarrow \frac{x}{6}=\frac{y}{4}$
$5y=4z\Leftrightarrow \frac{y}{4}=\frac{z}{5}$
Vậy:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
$\Rightarrow (\frac{x}{6})^3=(\frac{y}{4})^3=(\frac{z}{5})^3=\frac{xyz}{6.4.5}=\frac{120}{120}=1$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}=1$
$\Rightarrow x=6; y=4; z=5$
Em cảm ơn cô ạ!