Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{\sqrt{x^2+2y^2}}{xy}=\sqrt{\frac{1}{y^2}+\frac{2}{x^2}}\)
Áp dụng BĐT Buniacoxki ta có
\(\sqrt{\left(\frac{1}{y^2}+\frac{2}{x^2}\right)\left(1+2\right)}\ge\sqrt{\left(\frac{1}{y}+\frac{2}{x}\right)^2}=\frac{1}{y}+\frac{2}{x}\)
=> \(\sqrt{3}A\ge3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3\)
=> \(A\ge\sqrt{3}\)
\(MinA=\sqrt{3}\)khi x=y=z=3
ta có: \(\frac{\sqrt{2x^2+y^2}}{xy}=\sqrt{\frac{2}{y^2}+\frac{1}{x^2}}\)
Áp dụng BĐT bunyakovsky:\(\left(2+1\right)\left(\frac{2}{y^2}+\frac{1}{x^2}\right)\ge\left(\frac{2}{y}+\frac{1}{x}\right)^2\)
\(\Rightarrow\frac{2}{y^2}+\frac{1}{x^2}\ge\frac{1}{3}\left(\frac{2}{y}+\frac{1}{x}\right)^2\).....bla bla
Thấy cái đề mà thấy khiếp ...
Ta có : \(x^2-xy+y^2=\frac{3}{4}\left(x^2-2xy+y^2\right)+\frac{1}{4}\left(x^2+2xy+y^2\right)\)
\(=\frac{3}{4}\left(x-y\right)^2+\frac{1}{4}\left(x+y\right)^2\ge\frac{1}{4}\left(x+y\right)^2\)
\(\Rightarrow\sqrt{x^2-xy+y^2}\ge\frac{x+y}{2}\)
Tương tự \(\sqrt{y^2-yz+z^2}\ge\frac{y+z}{2}\)
\(\sqrt{z^2-zx+x^2}\ge\frac{x+z}{2}\)
Do đó : \(2S\ge\frac{x+y}{x+y+2z}+\frac{y+z}{y+z+2x}+\frac{x+z}{x+z+2y}\)
\(\Rightarrow2S+3\ge\left(1+\frac{x+y}{x+y+2z}\right)+\left(1+\frac{y+z}{y+z+2x}\right)+\left(1+\frac{x+z}{x+z+2y}\right)\)
\(=2\left(x+y+z\right)\left(\frac{1}{x+y+2z}+\frac{1}{y+z+2x}+\frac{1}{x+z+2y}\right)\)
\(\ge2\left(x+y+z\right).\frac{9}{4\left(x+y+z\right)}\)\(=\frac{9}{2}\)
(Áp dụng bđt Cô-si dạng engel cho 3 số)
\(\Rightarrow2S+3\ge\frac{9}{2}\)
\(\Rightarrow S\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
Vậy ..............
\(A=\sqrt{\frac{x}{2y^2z^2+xyz}}+\sqrt{\frac{y}{2x^2z^2+xyz}}+\sqrt{\frac{z}{2x^2y^2+xyz}}\)
\(A=\sqrt{\frac{x^2}{2xyz.yz+xz.xy}}+\sqrt{\frac{y^2}{2xyz.xz+xy.yz}}+\sqrt{\frac{z^2}{2xyz.xy+xz.yz}}\)
\(A=\sqrt{\frac{x^2}{yz\left(xy+yz+xz\right)+xz.xy}}+\sqrt{\frac{y^2}{xz\left(xy+yz+xz\right)+xy.yz}}+\sqrt{\frac{z^2}{xy\left(xy+yz+xz\right)+xz.yz}}\)
\(A=\sqrt{\frac{x^2}{\left(yz+xy\right)\left(yz+xz\right)}}+\sqrt{\frac{y^2}{\left(xz+xy\right)\left(xz+yz\right)}}+\sqrt{\frac{z^2}{\left(xy+yz\right)\left(xy+xz\right)}}\)
Áp dụng bđt \(\sqrt{ab}\le\frac{a+b}{2}\) ta có:
\(2A\le\frac{x}{yz+xy}+\frac{x}{yz+xz}+\frac{y}{xz+xy}+\frac{y}{xz+yz}+\frac{z}{xy+yz}+\frac{z}{xy+xz}\)
\(=\frac{x+z}{yz+xy}+\frac{x+y}{yz+xz}+\frac{y+z}{xz+xy}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Mà: \(xy+yz+xz=2xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)
\(\Rightarrow2A\le2\Rightarrow A\le1."="\Leftrightarrow a=b=c=\frac{3}{2}\)
Áp dụng bđt bu nhi a cốp xki :
\(\left(2x^2+y^2\right)\left(\left(\sqrt{2}\right)^2+\left(1\right)^2\right)\ge\left(\sqrt{2}.\sqrt{2}x+y.1\right)^2=\left(2x+y\right)^2\)
=> \(\sqrt{2x^2+y^2}\ge\frac{1}{\sqrt{3}}\left(2x+y\right)\) => \(\frac{\sqrt{2x^2+y^2}}{xy}\ge\frac{1}{\sqrt{3}}\cdot\frac{2x+y}{xy}=\frac{1}{\sqrt{3}}\left(\frac{2}{y}+\frac{1}{x}\right)\)
CM tương tự với hai cái còn lại
=> \(P\ge\frac{1}{\sqrt{3}}\left(\frac{3}{x}+\frac{3}{y}+\frac{3}{z}\right)=\frac{1}{\sqrt{3}}\cdot3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{\sqrt{3}}\cdot3\cdot\sqrt{3}=3\)
Dấu '' = '' xảy ra khi x = y =z = căn 3
gọi P là cái 1/x+1/y+1/z nha
1) (1/x+1/y+1/z)^2 = 1/x^2 + 1/y^2 + 1/z^2 + 2/(xy) + 2/(yz) + 2/(zx)
---> 3 = P + 2(x+y+z)/(xyz) = P + 2 ---> P = 1
bạn giải đi rùi mình tick cho